...
首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Strengthening by gamma/gamma' Interfacial Dislocation Networks in TMS-162--Toward a Fifth-Generation Single-Crystal Superalloy
【24h】

Strengthening by gamma/gamma' Interfacial Dislocation Networks in TMS-162--Toward a Fifth-Generation Single-Crystal Superalloy

机译:通过TMS-162中的γ/γ界面错位网络加强-迈向第五代单晶高温合金

获取原文
获取原文并翻译 | 示例

摘要

Lattice misfit is a common concept in superalloys. A linear relationship between the gamma/gamma' lattice misfit and the strength of Ni-base superalloy exists in the temperature range of 25 deg C to 800 deg C. This low-temperature strengthening effect is believed to be the result of coherency strains in the matrix. Development of single-crystal (SC) superalloys with gamma/gamma' structure increases the temperature capability, because the creep resistance of these gamma/gamma' alloys is much higher than the creep resistance of either the gamma or gamma' materials in bulk form. Especially, at high temperature, the initially cuboidal gamma' particles link up to form platelike precipitates (rafted structure) perpendicular- to the direction of applied stress. Thus, the high-temperature creep mechanism involving dislocation climb around particles will be inhibited by the rafted structure. Shearing of the gamma' phase is also inhibited by gamma/gamma' interfacial dislocation networks. In fact, strengthening a superalloy by the gamma/gamma' interfacial misfit is an important concept in superalloy design. In recent work, we compared several types of superalloys (TMS series) developed in our institute. The study confirmed that the lattice misfit has a close relationship with creep strength for high-temperature low-stress creep deformation. Following such a concept, we have developed a new superalloy TMS-162, which has superior high-temperature creep properties than the fourth-generation SC superalloy TMS-138.
机译:晶格失配是高温合金中的常见概念。 γ/γ′晶格失配与Ni基高温合金的强度之间存在线性关系,温度范围为25℃至800℃。这种低温强化作用被认为是由于合金中相干应变的结果。矩阵。具有γ/γ′结构的单晶(SC)超合金的发展提高了温度能力,因为这些γ/γ′合金的抗蠕变性比散装形式的γ或γ′材料的抗蠕变性高得多。尤其是在高温下,最初的长方体γ'颗粒连接起来形成垂直于施加应力方向的板状沉淀物(筏结构)。因此,涉及到位错在颗粒周围爬升的高温蠕变机理将被筏结构抑制。 γ/γ′界面错位网络也抑制了γ′相的剪切。实际上,通过γ/γ的界面失配来增强超级合金是超级合金设计中的重要概念。在最近的工作中,我们比较了我们研究所开发的几种类型的超级合金(TMS系列)。研究证实,晶格失配与高温低应力蠕变变形的蠕变强度密切相关。遵循这样的概念,我们开发了一种新型的高温合金TMS-162,它比第四代SC高温合金TMS-138具有更高的高温蠕变性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号