...
首页> 外文期刊>Methods: A Companion to Methods in Enzymology >Dominant negative mutants of guanylyl cyclase: probes for global functions and intramolecular mechanisms.
【24h】

Dominant negative mutants of guanylyl cyclase: probes for global functions and intramolecular mechanisms.

机译:鸟苷酸环化酶的主要负突变体:全局功能和分子内机制的探针。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Dominant negative mutants are unique tools to define functions of a protein, not only within complex cellular and organismal contexts, but also mechanistically within a protein. Guanylyl cyclases are amenable to studies with dominant negative mutants, with their own sets of opportunities for insight and pitfalls to overcome. Membrane and soluble forms of guanylyl cyclase represent self-contained signal transduction modules that recognize, transduce, and amplify an external signal to give a carefully controlled response. Beginning with recognition of peptide hormones versus nitric oxide, membrane and soluble guanylyl cyclases are considerably different, except that their catalytic domains are closely related. Studies on these catalytic domains and their counterparts in adenylyl cyclases have raised an integral question of whether one or two domains form a catalytic site, which remains unresolved. Regardless of which model is correct, guanylyl cyclases appear to require an oligomeric state to function properly. The inferred relationship between protein-protein interaction and function is the basis for developing dominant negative mutants, which can be designed without prior structural information. Soluble guanylyl cyclases exist in a heterodimeric state, whereas membrane guanylyl cyclases are homodimeric, or possibly higher-order oligomers. These properties dictate that dominant negative mutants of membrane and soluble guanylyl cyclases be approached in fundamentally different ways, with regard to their design, their functional consequences, and their limitations. Using dominant negative mutants as specific inhibitors in complex systems, such as transgenic animals, represents a significant advance, and continuing improvements are just an inkling of the extraordinary potential of this approach. For example, the function of a protein can be obscured because it is expressed in multiple cell types; by restricting its pattern of expression, a cell-specific promoter, coupled to a dominant negative mutant, can pinpoint this function. As more sophisticated methods are developed, dominant negative mutants will provide additional opportunities to unveil new regulatory mechanisms, new signaling pathways, or even new therapeutic approaches. Copyright 1999 Academic Press.
机译:显性负突变体是定义蛋白质功能的独特工具,不仅可以在复杂的细胞和生物环境中,而且可以在蛋白质中机械地定义。鸟苷酸环化酶适合于具有显性负突变的研究,具有自己的见解和陷阱可以克服。鸟苷酸环化酶的膜和可溶性形式代表了独立的信号转导模块,可识别,转导和放大外部信号以提供仔细控制的响应。从识别肽激素与一氧化氮开始,膜和可溶性鸟苷基环化酶有很大不同,只是它们的催化结构域密切相关。对这些催化结构域及其在腺苷酸环化酶中的对应物的研究提出了一个完整的问题,即一个或两个结构域是否形成催化位点,而该催化位点仍未解决。无论哪种模型正确,鸟苷酸环化酶似乎都需要寡聚状态才能正常运行。蛋白质-蛋白质相互作用与功能之间的推断关系是开发显性负突变体的基础,该突变体无需事先结构信息即可设计。可溶性鸟苷酸环化酶以异二聚体状态存在,而膜鸟苷酸环化酶是同二聚体,或者可能是更高阶的寡聚体。这些性质表明,关于膜和可溶性鸟苷基环化酶的显性负突变体,就其设计,功能后果和局限性而言,可以采用根本不同的方法。在复杂的系统(例如转基因动物)中使用显性负突变体作为特异性抑制剂代表了重大进展,而持续的改进只是这种方法非凡潜力的暗示。例如,蛋白质的功能可能会被遮盖,因为它在多种细胞类型中表达。通过限制其表达方式,与显性负突变体偶联的细胞特异性启动子可以确定该功能。随着更复杂方法的发展,显性阴性突变体将提供更多机会揭示新的调控机制,新的信号传导途径,甚至是新的治疗方法。版权所有1999 Academic Press。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号