首页> 外文期刊>Optical and Quantum Electronics >A nanomaterial sensor based on tapered photonic crystal nanometer-scale cavity in a microdisk
【24h】

A nanomaterial sensor based on tapered photonic crystal nanometer-scale cavity in a microdisk

机译:一种基于微盘锥形光子晶体纳米级空腔的纳米材料传感器

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this paper, we introduce an optical nano-cavity-based sensor comprising tapered air-holes in a circular path with a central radius close to the perimeter of an optical disk resonator. For more confinement and tuning of the whispering gallery modes (WGMs), the air-holes are interconnected by shallow-etched thin slots (SETSs) at a certain radius. In this way, we gained a combination of an optical microcavity disk resonator, a curved row of photonic crystal (PhC), and the SETSs joining the air-holes. The proposed structure benefits from the high-quality (Q) factor WGMs of the disk, the photonic bandgap of PhC, and a nanometer-scale circular slot region for sensing biomaterials. Improved sensitivity, as well as ease of fabrication, can be attained in this combined structure. The high-intensity electromagnetic (EM) fields penetrated in the very small volume nanocavity/slot region provide conditions for the interaction of EM fields with biomaterials in order to enable a lable-free sensing method. The combined slotted-PhC-microdisk resonator structure exhibits sensitivity as high as 99 nm/RIU, and a modal volume as small as 0.055(lambda/n)(3).
机译:在本文中,我们介绍了一种基于光学纳米腔的传感器,该传感器由圆形路径中的锥形气孔组成,其中心半径接近光盘谐振器的周边。为了更好地限制和调整耳语画廊模式 (WGM),气孔通过特定半径的浅蚀刻薄槽 (SETS) 相互连接。通过这种方式,我们获得了光学微腔盘谐振器、一排弯曲的光子晶体 (PhC) 和连接气孔的 SETS。所提出的结构得益于圆盘的高质量 (Q) 因子 WGM、PhC 的光子带隙和用于传感生物材料的纳米级圆形槽区域。在这种组合结构中可以提高灵敏度以及易于制造。穿透在非常小体积的纳米腔/槽区域中的高强度电磁场为电磁场与生物材料的相互作用提供了条件,以实现无标签的传感方法。组合开槽PhC-微盘谐振器结构的灵敏度高达99 nm/RIU,模态体积小至0.055(lambda/n)(3)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号