首页> 外文期刊>Mathematical Biosciences: An International Journal >Inverse problem studies of biochemical systems with structure identification of S-systems by embedding training functions in a genetic algorithm
【24h】

Inverse problem studies of biochemical systems with structure identification of S-systems by embedding training functions in a genetic algorithm

机译:通过将训练函数嵌入遗传算法的S系统结构识别的生化系统逆问题研究

获取原文
获取原文并翻译 | 示例
           

摘要

An efficient inverse problem approach for parameter estimation, state and structure identification from dynamic data by embedding training functions in a genetic algorithm methodology (ETFGA) is proposed for nonlinear dynamical biosystems using S-system canonical models. Use of multiple shooting and decomposition approach as training functions has been shown for handling of noisy datasets and computational efficiency in studying the inverse problem. The advantages of the methodology are brought out systematically by studying it for three biochemical model systems of interest. By studying a small-scale gene regulatory system described by a S-system model, the first example demonstrates the use of ETFGA for the multifold aims of the inverse problem. The estimation of a large number of parameters with simultaneous state and network identification is shown by training a generalized S-system canonical model with noisy datasets. The results of this study bring out the superior performance of ETFGA on comparison with other metaheuristic approaches. The second example studies the regulation of cAMP oscillations in Dictyostelium cells now assuming limited availability of noisy data. Here, flexibility of the approach to incorporate partial system information in the identification process is shown and its effect on accuracy and predictive ability of the estimated model are studied. The third example studies the phenomenological toy model of the regulation of circadian oscillations in Drosophila that follows rate laws different from S-system power-law. For the limited noisy data, using a priori information about properties of the system, we could estimate an alternate S-system model that showed robust oscillatory behavior with predictive abilities. (C) 2016 Elsevier Inc. All rights reserved.
机译:针对使用S系统规范模型的非线性动力学生物系统,提出了一种通过在遗传算法方法(ETFGA)中嵌入训练函数,从动态数据进行参数估计,状态和结构识别的有效逆问题方法。在研究反问题中,已经显示了使用多重射击和分解方法作为训练功能来处理嘈杂的数据集和计算效率。通过对三个感兴趣的生化模型系统进行研究,系统地展现了该方法的优势。通过研究由S系统模型描述的小规模基因调控系统,第一个例子说明了ETFGA在逆问题的多重目标中的应用。通过训练带有噪声数据集的广义S系统规范模型,可以显示具有同时状态和网络标识的大量参数的估计。与其他元启发式方法相比,这项研究的结果展示了ETFGA的卓越性能。第二个示例研究了假设有噪声数据的可用性有限的情况下,Dictyostelium细胞中cAMP振荡的调控。这里,显示了在识别过程中合并部分系统信息的方法的灵活性,并研究了其对估计模型的准确性和预测能力的影响。第三个示例研究了果蝇中昼夜节律调节的现象学玩具模型,该模型遵循不同于S系统幂律的速率定律。对于有限的嘈杂数据,使用有关系统属性的先验信息,我们可以估计一个备用S系统模型,该模型显示出具有预测能力的鲁棒振荡行为。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号