首页> 外文期刊>Methods: A Companion to Methods in Enzymology >Direct physical study of kinetochore-microtubule interactions by reconstitution and interrogation with an optical force clamp.
【24h】

Direct physical study of kinetochore-microtubule interactions by reconstitution and interrogation with an optical force clamp.

机译:通过光力钳的重构和审讯对线粒体-微管相互作用的直接物理研究。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We detail our use of computer-controlled optical traps to study interactions between kinetochore components and dynamic microtubules. Over the last two decades optical traps have helped uncover the working principles of conventional molecular motors, such as kinesin and dynein, but only recently have they been applied to study kinetochore function. The most useful traps combine sensitive position detectors and servo-control, allowing them to be operated as force clamps that maintain constant loads on objects as they move. Our instrument, which is among the simplest designs that permits force clamping, relies on a computer-controlled piezoelectric stage and a single laser for trapping and position detection. We apply it in motility assays where beads coated with pure microtubule-binding kinetochore components are attached to the tips of individual dynamic microtubules. Like kinetochores in vivo, the beads remain tip-attached, undergoing movements coupled to filament assembly and disassembly. The force clamp provides many benefits over instruments that lack feedback control. It allows tension to be applied continuously during both assembly- and disassembly-driven movement, providing a close match to the physiological situation. It also enables tracking with high resolution, and simplifies data interpretation by eliminating artifacts due to molecular compliance. The formation of persistent, load-bearing attachments to dynamic microtubule tips is fundamental to all kinetochore activities. Our direct, physical study of kinetochore-microtubule coupling may therefore furnish insights into many vital kinetochore functions, including correction of aberrant attachments and generation of the 'wait-anaphase' signals that delay mitosis until all kinetochores are properly attached.
机译:我们详细介绍了计算机控制的光阱的用途,以研究线粒体组件和动态微管之间的相互作用。在过去的二十年中,光阱帮助揭示了传统分子马达(如驱动蛋白和动力蛋白)的工作原理,但直到最近才将其用于研究动粒功能。最有用的捕集阱结合了灵敏的位置检测器和伺服控制,使它们可以作为压力钳操作,从而在物体移动时保持恒定的负载。我们的仪器是允许夹紧力的最简单的设计之一,它依靠计算机控制的压电平台和单个激光器进行陷波和位置检测。我们将其应用于运动性测定中,在该测定中,将涂有纯微管结合动线粒成分的珠子附着到单个动态微管的尖端。像体内的动植物一样,微珠保持尖端连接,并经历与细丝组装和拆卸相关的运动。相对于缺少反馈控制的仪器,力钳具有许多优势。它允许在组装和拆卸驱动的运动过程中连续施加张力,从而与生理状况紧密匹配。它还可以实现高分辨率跟踪,并通过消除由于分子顺应性造成的伪影来简化数据解释。对动态微管尖端而言,持久的,承重的附件的形成是所有动线粒活动的基础。因此,我们对线粒体-微管偶联的直接,物理研究可能会提供对许多重要的线粒体功能的见解,包括纠正异常的附着和生成“等待后期”信号,这些信号会延迟有丝分裂,直到正确连接所有的动植物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号