首页> 外文期刊>Medical Physics >Determination of zero-field size percent depth doses and tissue maximum ratios for stereotactic radiosurgery and IMRT dosimetry: comparison between experimental measurements and Monte Carlo simulation.
【24h】

Determination of zero-field size percent depth doses and tissue maximum ratios for stereotactic radiosurgery and IMRT dosimetry: comparison between experimental measurements and Monte Carlo simulation.

机译:立体定向放射外科手术和IMRT剂量测定法的零场大小百分比深度剂量和组织最大比率的确定:实验测量结果与蒙特卡洛模拟之间的比较。

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, zero-field percent depth dose (PDD) and tissue maximum ratio (TMR) for 6 MV x rays have been determined by extrapolation from dosimetric measurements over the field size range 1 x 1-10 x 10 cm2. The key to small field dosimetry is the selection of a proper dosimeter for the measurements, as well as the alignment of the detector with the central axis (CAX) of beam. The measured PDD results are compared with those obtained from Monte Carlo (MC) simulation to examine the consistency and integrity of the measured data from which the zero-field PDD is extrapolated. Of the six most commonly used dosimeters in the clinic, the stereotactic diode field detector (SFD), the PTW Pinpoint, and the Exradin A14 are the most consistent and produce results within 2% of each other over the entire field size range 1 x 1-40 x 40 cm2. Although the diamond detector has the smallest sensitive volume, it is the least stable and tends to disagree with all other dosimeters by more than 10%. The zero-field PDD data extrapolated from larger field measurements obtained with the SFD are in good agreement with the MC results. The extrapolated and MC data agree within 2.5% over the clinical depth range (dmax-30 cm), when the MC data for the zero field are derived from a 1 X 1 cm2 field simulation using a miniphantom (1 x 1 x 48 cm3). The agreement between the measured PDD and the MC data based on a full phantom (48 x 48 x 48 cm3) simulation is fairly good within 1% at shallow depths to approximately 5% at 30 cm. Our results seem to indicate that zero-field TMR can be accurately calculated from PDD measurements with a proper choice of detector and a careful alignment of detector axis with the CAX.
机译:在这项研究中,通过对1 x 1-10 x 10 cm2视场范围内的剂量测量进行外推,确定了6 MV x射线的零视场深度剂量(PDD)和组织最大比率(TMR)。小视场剂量学的关键是选择合适的剂量计进行测量,以及将检测器与光束的中心轴(CAX)对准。将测得的PDD结果与从Monte Carlo(MC)模拟获得的结果进行比较,以检查从中推断出零场PDD的测得数据的一致性和完整性。在临床上最常用的六种剂量计中,立体定向二极管场检测器(SFD),PTW Pinpoint和Exradin A14最一致,并且在整个视野范围1 x 1中产生的结果彼此相差2% -40 x 40平方厘米。尽管钻石探测器的敏感体积最小,但其稳定性最差,并且与所有其他剂量计的差异往往超过10%。从SFD获得的更大的现场测量结果推断出的零场PDD数据与MC结果非常吻合。当零场的MC数据来自使用微型模型(1 x 1 x 48 cm3)的1 X 1 cm2场模拟得出的外推值和MC数据在临床深度范围(dmax-30 cm)内在2.5%内一致。根据完整的幻像(48 x 48 x 48 cm3)模拟,测得的PDD与MC数据之间的一致性相当好,浅深度为1%,30cm为约5%。我们的结果似乎表明,通过适当选择检测器并将检测器轴与CAX仔细对齐,可以从PDD测量中准确计算出零场TMR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号