...
首页> 外文期刊>Medical Physics >Effect of ethmoid sinus cavity on dose distribution at interface and how to correct for it: magnetic field with photon beams.
【24h】

Effect of ethmoid sinus cavity on dose distribution at interface and how to correct for it: magnetic field with photon beams.

机译:筛窦窦腔对界面剂量分布的影响及其校正方法:带光子束的磁场。

获取原文
获取原文并翻译 | 示例
           

摘要

Recent work proposed the use of magnetic field as a solution to reduce the undesirable effect of air cavities on dose after the air/tissue interface. In contrast to the published work that looks into the problem with slab geometries, in this work we use actual anatomy based on CT images and the magnetic flux from a Helmholtz coil-pair configuration to investigate the problem and to evaluate the efficacy of the proposed solution. The EGS4 phantom was created using CT scans of the head at the level of the ethmoid sinus. The sinus measures 1.95 x 2.18 x 2.00 cm3. The grid size used is 0.15 x 0.15 x 0.4 cm3. Three different radiation beams, 1 x 1, 2 x 2, and 4 x 4 cm2, all 6 MV irradiate the phantom in two different configurations: single beam and parallel opposed. The magnetic field has three different strengths: 0.0, 0.5, and 1.0 T. These represent the maximum strength achieved in the middle of the configuration, between the two coils. The depth of the second buildup region in the absence of the magneticfield was used as the normalization point for the purpose of analysis. Dose was then scored at 0.23 cm after the air/tissue interface. A second phantom, very similar to the CT-based phantom, was created, but with the sinus cavity filled with unit-density tissue; everything else remained the same. This phantom provides a base to investigate the effect of the air cavity on dose. The phantom was termed the phantom without air, or PWA for short. We use the terms "dose reduction ratio" (DRR), defined as one minus the ratio of the dose in PWA to the dose with the presence of the cavity multiplied by 100% and the "dose improvement ratio" (DIR), defined as the ratio of dose with B to that without B, to evaluate the reduction in dose due to the cavity and the improvement in dose with magnetic field, respectively. For single beam geometry, the reduced dose ranged from 41% (1 x 1 cm2 beam) to less than 2% (4 x 4 cm2 beam). For the same single beam geometry, DIR ranged from 1.13 to 1.00 (DIR = 1 indicates no change) with0.5 T, whereas it ranged from 1.44 to 1.05 for 1.0 T magnets. When an opposing beam was used, the reduced dose was not as severe, such that DRR ranged from 24% to less than 2%. Whereas the dose improvement ranged from 1.08 to 1.00 for 0.5 T, and from 1.23 to 1.01 for 1.0 T.
机译:最近的工作提出使用磁场作为解决方案,以减少空气/组织界面后气腔对剂量的不良影响。与研究平板几何形状问题的已发表工作相反,在这项工作中,我们使用基于CT图像和亥姆霍兹线圈对配置的磁通量的实际解剖结构来研究问题并评估所提出解决方案的有效性。 EGS4体模是使用筛窦窦水平的头部CT扫描创建的。鼻窦尺寸为1.95 x 2.18 x 2.00 cm3。使用的栅格尺寸为0.15 x 0.15 x 0.4 cm3。全部6 MV的三种不同的辐射束(1 x 1、2 x 2和4 x 4 cm2)以两种不同的配置照射体模:单束和平行对置。磁场具有三种不同的强度:0.0、0.5和1.0T。这些强度表示在两个线圈之间的中间配置中获得的最大强度。为了分析的目的,在没有磁场的情况下将第二堆积区域的深度用作归一化点。然后在空气/组织界面之后的0.23厘米处对剂量进行评分。创建了第二个幻影,与基于CT的幻影非常相似,但是窦腔中充满了单位密度组织。其他一切都保持不变。该体模为研究气腔对剂量的影响提供了基础。幻影被称为没有空气的幻影,或简称PWA。我们使用的术语“减量比”(DRR)定义为1减去PWA中的剂量与存在腔的剂量之比乘以100%,而“剂量改善率”(DIR)定义为分别用含B的剂量与不含B的剂量之比来评估因腔引起的剂量减少和有磁场的剂量增加。对于单束几何形状,减少的剂量范围从41%(1 x 1 cm2束)到小于2%(4 x 4 cm2束)。对于相同的单束几何形状,DIR在0.5 T的范围内为1.13至1.00(DIR = 1表示没有变化),而1.0 T磁体的DIR范围为1.44至1.05。当使用对立光束时,减少的剂量没有那么严重,以至DRR在24%至小于2%的范围内。剂量的提高范围是0.5 T从1.08到1.00,1.0 T从1.23到1.01。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号