首页> 外文期刊>Medical Physics >Magnetic tracking for TomoTherapy systems: Gradiometer based methods to filter eddy-current magnetic fields
【24h】

Magnetic tracking for TomoTherapy systems: Gradiometer based methods to filter eddy-current magnetic fields

机译:TomoTherapy系统的磁跟踪:基于梯度计的过滤涡流磁场的方法

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose: TomoTherapy systems lack real-time, tumor tracking. A possible solution is to use electromagnetic markers; however, eddy-current magnetic fields generated in response to a magnetic source can be comparable to the signal, thus degrading the localization accuracy. Therefore, the tracking system must be designed to account for the eddy fields created along the inner bore conducting surfaces. The aim of this work is to investigate localization accuracy using magnetic field gradients to determine feasibility toward TomoTherapy applications. Methods: Electromagnetic models are used to simulate magnetic fields created by a source and its simultaneous generation of eddy currents within a conducting cylinder. The source position is calculated using a least-squares fit of simulated sensor data using the dipole equation as the model equation. To account for field gradients across the sensor area (~25 cm2), an iterative method is used to estimate the magnetic field at the sensor center. Spatial gradients are calculated with two arrays of uniaxial, paired sensors that form a gradiometer array, where the sensors are considered ideal. Results: Experimental measurements of magnetic fields within the TomoTherapy bore are shown to be 1%-10% less than calculated with the electromagnetic model. Localization results using a 5 × 5 array of gradiometers are, in general, 2-4 times more accurate than a planar array of sensors, depending on the solenoid orientation and position. Simulation results show that the localization accuracy using a gradiometer array is within 1.3 mm over a distance of 20 cm from the array plane. In comparison, localization errors using single array are within 5 mm. Conclusions: The results indicate that the gradiometer method merits further studies and work due to the accuracy achieved with ideal sensors. Future studies should include realistic sensor models and extensive numerical studies to estimate the expected magnetic tracking accuracy within a TomoTherapy system before proceeding with prototype development.
机译:目的:TomoTherapy系统缺乏实时的肿瘤追踪。一种可能的解决方案是使用电磁标记。然而,响应于磁源而产生的涡流磁场可以与信号相当,从而降低了定位精度。因此,跟踪系统必须设计成考虑沿内孔导电表面产生的涡流场。这项工作的目的是使用磁场梯度研究定位精度,以确定在TomoTherapy应用中的可行性。方法:电磁模型用于模拟源产生的磁场及其在导电圆柱体内同时产生的涡流。使用偶极子方程作为模型方程,使用模拟传感器数据的最小二乘拟合来计算源位置。为了考虑整个传感器区域(〜25 cm2)的场梯度,使用迭代方法来估计传感器中心的磁场。空间梯度是使用两个成对的单轴成对传感器阵列形成梯度仪阵列来计算的,在这些传感器中传感器被认为是理想的。结果:TomoTherapy孔内磁场的实验测量结果显示比电磁模型计算的结果小1%-10%。通常,使用5×5梯度计阵列的定位结果比平面传感器阵列的精度高2-4倍,具体取决于螺线管的方向和位置。仿真结果表明,使用梯度计阵列在距阵列平面20 cm的距离内的定位精度在1.3 mm以内。相比之下,使用单个阵列的定位误差在5 mm以内。结论:结果表明,梯度计方法值得进一步研究和工作,因为理想传感器可实现精度。未来的研究应包括现实的传感器模型和广泛的数值研究,以在继续进行原型开发之前估算TomoTherapy系统内预期的磁跟踪精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号