...
首页> 外文期刊>Medical Physics >Inverse plan optimization accounting for random geometric uncertainties with a multiple instance geometry approximation (MIGA).
【24h】

Inverse plan optimization accounting for random geometric uncertainties with a multiple instance geometry approximation (MIGA).

机译:逆向计划优化考虑了具有多实例几何近似(MIGA)的随机几何不确定性。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Radiotherapy treatment plans that are optimized to be highly conformal based on a static patient geometry can be degraded by setup errors and/or intratreatment motion, particularly for IMRT plans. To achieve improved plans in the face of geometrical uncertainties, direct simulation of multiple instances of the patient anatomy (to account for setup and/or motion uncertainties) is used within the inverse planning process. This multiple instance geometry approximation (MIGA) method uses two or more instances of the patient anatomy and optimizes a single beam arrangement for all instances concurrently. Each anatomical instance can represent expected extremes or a weighted distribution of geometries. The current implementation supports mapping between instances that include distortions, but this report is limited to the use of rigid body translations/ rotations. For inverse planning, the method uses beamlet dose calculations for each instance, with the resulting doses combined using a weighted sum of the results for the multiple instances. Beamlet intensities are then optimized using the inverse planning system based on the cost for the composite dose distribution. MIGA can simulate various types of geometrical uncertainties, including random setup error and intratreatment motion. A limited number of instances are necessary to simulate Gaussian-distributed errors. IMRT plans optimized using MIGA show significantly less degradation in the face of geometrical errors, and are robust to the expected (simulated) motions. Results for a complex headeck plan involving multiple target volumes and numerous normal structures are significantly improved when the MIGA method of inverse planning is used. Inverse planning using MIGA can lead to significant improvements over the use of simple PTV volume expansions for inclusion of geometrical uncertainties into inverse planning, since it can account for the correlated motions of the entire anatomical representation. The optimized plan results reflect the differing patient geometry situations which can be important near the surface or heterogeneities. For certain clinical situations, the MIGA optimization approach can correct for a significant part of the degradation of the plan caused by the setup uncertainties.
机译:尤其是对于IMRT计划,设置错误和/或治疗过程中的动作可能会降低基于静态患者几何形状而优化为高度保形的放射治疗计划。为了在面对几何不确定性的情况下实现改进的计划,在逆向计划过程中使用了对患者解剖结构的多个实例的直接模拟(以考虑设置和/或运动的不确定性)。这种多实例几何近似(MIGA)方法使用两个或更多患者解剖结构实例,并为所有实例同时优化单个光束布置。每个解剖实例可以表示预期的极端值或几何的加权分布。当前的实现支持在包含变形的实例之间进行映射,但是此报告仅限于使用刚体平移/旋转。对于逆向计划,该方法针对每个实例使用子束剂量计算,并使用多个实例的结果的加权总和来组合所得的剂量。然后,根据复合剂量分布的成本,使用逆向计划系统优化子束强度。 MIGA可以模拟各种类型的几何不确定性,包括随机设置误差和处理内运动。为了模拟高斯分布的误差,需要有限数量的实例。使用MIGA优化的IMRT计划在面对几何误差时显示出明显降低的退化,并且对预期(模拟)运动具有鲁棒性。当使用MIGA逆向计划方法时,涉及多个目标体积和众多正常结构的复杂头颈计划的结果将得到显着改善。使用MIGA进行逆向规划可以大大简化使用简单的PTV体积扩展以将几何不确定性纳入逆向规划中的过程,因为它可以解决整个解剖表示的相关运动。优化的计划结果反映了不同的患者几何情况,这在表面或异质性附近可能很重要。对于某些临床情况,MIGA优化方法可以纠正因设置不确定性而导致的计划降级的很大一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号