...
首页> 外文期刊>Free Radical Biology and Medicine: The Official Journal of the Oxygen Society >Novel mechanisms for superoxide-scavenging activity of human manganese superoxide dismutase determined by the K68 key acetylation site
【24h】

Novel mechanisms for superoxide-scavenging activity of human manganese superoxide dismutase determined by the K68 key acetylation site

机译:由K68关键乙酰化位点确定的人类锰超氧化物歧化酶超氧化物清除活性的新机制

获取原文
获取原文并翻译 | 示例

摘要

Superoxide is the primary reactive oxygen species generated in the mitochondria. Manganese superoxide dismutase (SOD2) is the major enzymatic superoxide scavenger present in the mitochondrial matrix and one of the most crucial reactive oxygen species scavenging enzymes in the cell. SOD2 is activated by sirtuin 3 (SIRT3) through NAD(+) -dependent deacetylation. However, the exact acetylation sites of SOD2 are ambiguous and the mechanisms underlying the deacetylation-mediated SOD2 activation largely remain unknown. We are the first to characterize SOD2 mutants of the acetylation sites by investigating the relative enzymatic activity, structures, and electrostatic potential of SOD2 in this study. These SOD2 mutations affected the superoxide scavenging activity in vitro and in HEK293T cells. The lysine 68 (K68) site is the most important acetylation site contributing to SOD2 activation and plays a role in cell survival after paraquat treatment. The molecular basis underlying the regulation of SOD2 activity by K68 was investigated in detail. Molecular dynamics simulations revealed that K68 mutations induced a conformational shift of residues located in the active center of SOD2 and altered the charge distribution on the SOD2 surface. Thus, the entry of the superoxide anion into the coordinated core of SOD2 was inhibited. Our results provide a novel mechanistic insight, whereby SOD2 acetylation affects the structure and charge distribution of SOD2, its tetramerization, and p53-SOD2 interactions of SOD2 in the mitochondria, which may play a role in nuclear-mitochondrial communication during aging. (C) 2015 Elsevier Inc. All rights reserved.
机译:超氧化物是线粒体中产生的主要活性氧。锰超氧化物歧化酶(SOD2)是存在于线粒体基质中的主要酶促超氧化物清除剂,也是细胞中最关键的活性氧清除酶之一。 sirtuin 3(SIRT3)通过NAD(+)依赖性脱乙酰基作用激活SOD2。但是,SOD2的确切乙酰化位点是模棱两可的,并且去乙酰化介导的SOD2活化的潜在机制在很大程度上仍然未知。在本研究中,我们是第一个通过研究SOD2的相对酶活性,结构和静电势来表征乙酰化位点的SOD2突变体的方法。这些SOD2突变影响了体外和HEK293T细胞中的超氧化物清除活性。赖氨酸68(K68)位点是最重要的乙酰化位点,有助于SOD2活化,并在百草枯处理后对细胞存活起作用。详细研究了通过K68调节SOD2活性的分子基础。分子动力学模拟表明,K68突变引起位于SOD2活性中心的残基构象转移,并改变了SOD2表面的电荷分布。因此,抑制了超氧阴离子进入SOD 2的配位核。我们的研究结果提供了一种新颖的机理见解,其中SOD2乙酰化影响线粒体中SOD2的结构和电荷分布,其四聚化以及p53-SOD2相互作用,这可能在衰老过程中参与核-线粒体通讯。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号