...
首页> 外文期刊>Medical Physics >Accelerated barrier optimization compressed sensing (ABOCS) reconstruction for cone-beam CT: Phantom studies
【24h】

Accelerated barrier optimization compressed sensing (ABOCS) reconstruction for cone-beam CT: Phantom studies

机译:锥形束CT的加速障碍优化压缩感知(ABOCS)重建:幻影研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose: Recent advances in compressed sensing (CS) enable accurate CT image reconstruction from highly undersampled and noisy projection measurements, due to the sparsifiable feature of most CT images using total variation (TV). These novel reconstruction methods have demonstrated advantages in clinical applications where radiation dose reduction is critical, such as onboard cone-beam CT (CBCT) imaging in radiation therapy. The image reconstruction using CS is formulated as either a constrained problem to minimize the TV objective within a small and fixed data fidelity error, or an unconstrained problem to minimize the data fidelity error with TV regularization. However, the conventional solutions to the above two formulations are either computationally inefficient or involved with inconsistent regularization parameter tuning, which significantly limit the clinical use of CS-based iterative reconstruction. In this paper, we propose an optimization algorithm for CS reconstruction which overcomes the above two drawbacks. Methods: The data fidelity tolerance of CS reconstruction can be well estimated based on the measured data, as most of the projection errors are from Poisson noise after effective data correction for scatter and beam-hardening effects. We therefore adopt the TV optimization framework with a data fidelity constraint. To accelerate the convergence, we first convert such a constrained optimization using a logarithmic barrier method into a form similar to that of the conventional TV regularization based reconstruction but with an automatically adjusted penalty weight. The problem is then solved efficiently by gradient projection with an adaptive Barzilai-Borwein step-size selection scheme. The proposed algorithm is referred to as accelerated barrier optimization for CS (ABOCS), and evaluated using both digital and physical phantom studies. Results: ABOCS directly estimates the data fidelity tolerance from the raw projection data. Therefore, as demonstrated in both digital Shepp-Logan and physical head phantom studies, consistent reconstruction performances are achieved using the same algorithm parameters on scans with different noise levels andor on different objects. On the contrary, the penalty weight in a TV regularization based method needs to be fine-tuned in a large range (up to seven times) to maintain the reconstructed image quality. The improvement of ABOCS on computational efficiency is demonstrated in the comparisons with adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS), an existing CS reconstruction algorithm also using constrained optimization. ASD-POCS alternatively minimizes the TV objective using adaptive steepest descent (ASD) and the data fidelity error using projection onto convex sets (POCS). For similar image qualities of the Shepp-Logan phantom, ABOCS requires less computation time than ASD-POCS in MATLAB by more than one order of magnitude. Conclusions: We propose ABOCS for CBCT reconstruction. As compared to other published CS-based algorithms, our method has attractive features of fast convergence and consistent parameter settings for different datasets. These advantages have been demonstrated on phantom studies.
机译:目的:由于大多数使用总变化量(TV)的CT图像都具有稀疏的特征,因此压缩感测(CS)的最新进展使得能够从高度欠采样和嘈杂的投影测量中准确重建CT图像。这些新颖的重建方法已证明在减少辐射剂量至关重要的临床应用中具有优势,例如放射治疗中的机载锥形束CT(CBCT)成像。使用CS的图像重建被公式化为一个约束问题,以在较小且固定的数据保真度误差内将TV物镜最小化,或一个无约束问题,以利用TV正则化将数据保真度误差减至最小。但是,上述两种配方的常规解决方案要么计算效率低下,要么涉及不一致的正则化参数调整,这极大地限制了基于CS的迭代重建的临床应用。在本文中,我们提出了一种用于CS重建的优化算法,该算法克服了以上两个缺点。方法:根据测量的数据可以很好地估计CS重建的数据保真度容忍度,因为大多数投影误差来自经过有效数据校正(用于散射和束硬化效果)的泊松噪声。因此,我们采用具有数据保真度约束的电视优化框架。为了加速收敛,我们首先使用对数势垒方法将这种约束优化转换为类似于基于常规电视正则化的重构形式,但具有自动调整的权重。然后通过采用自适应Barzilai-Borwein步长选择方案的梯度投影有效地解决了该问题。所提出的算法被称为CS加速障碍优化(ABOCS),并使用数字和物理幻象研究对其进行了评估。结果:ABOCS从原始投影数据直接估计数据保真度公差。因此,正如在数字Shepp-Logan研究和物理头部模型研究中所证明的那样,在具有不同噪声水平或不同对象的扫描中使用相同的算法参数,可以获得一致的重建性能。相反,基于电视正则化的方法中的惩罚权重需要在大范围内(最多七次)微调,以保持重建的图像质量。通过与自适应最速下降投影到凸集(ASD-POCS)进行比较,证明了ABOCS在计算效率上的改进,ASD-POCS是一种现有的CS重构算法,也使用了约束优化。 ASD-POCS可以使用自适应最速下降(ASD)来最小化电视目标,而使用凸集投影(POCS)可以将数据保真度误差最小化。对于Shepp-Logan体模的类似图像质量,与MATLAB中的ASD-POCS相比,ABOCS所需的计算时间要短一个数量级。结论:我们提出ABOCS用于CBCT重建。与其他基于CS的已发布算法相比,我们的方法具有吸引人的特性,即针对不同数据集的快速收敛和一致的参数设置。这些优势已在幻像研究中得到证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号