首页> 外文期刊>Free Radical Biology and Medicine: The Official Journal of the Oxygen Society >Can tryptophan oxidation lead to lower tryptophan level in diabetes? A commentary on 'Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine'.
【24h】

Can tryptophan oxidation lead to lower tryptophan level in diabetes? A commentary on 'Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine'.

机译:色氨酸氧化会导致糖尿病中的色氨酸水平降低吗?关于“蛋白质糖基化损伤的传播涉及通过活性氧对色氨酸残基的修饰:吡pyr胺的抑制”的评论。

获取原文
获取原文并翻译 | 示例
           

摘要

Diabetes is associated with hyperglycemia and hyperketo-nemia, both of which generate reactive oxygen species [1-5]. A state of imbalance exists between oxidant stress and antiox-idative defense mechanisms that favors the former in diabetes. Accumulated oxidant stress can peroxidize the lipid and protein structure of the membrane bilayer, inducing a variety of cellular dysfunctions that lead ultimately to tissue pathology . There has been significant recent interest in oxidative stress and its role in the development of complications in diabetic patients [1-7]. No previous study has reported on the relationship between the oxidation of tryptophan and the altered function of protein molecules under hyperglycemic conditions. In mis issue of Free Radical Biology and Medicine, Chetyrkin and colleagues demonstrate that high levels of glucose can cause specific oxidative modification of tryptophan residues in lysozymes, thus inhibiting their activity. Similar modification of tryptophan residues has also been induced by the purified albumin-Amadori, a ribose-derived model glycation intermediate , This suggests that oxidative modification of tryptophan residues in protein occurs via either glucose or protein-Amadori intermediates and contributes to the altered function of the protein. This is an important finding with physiological significance. This study also showed that pyridoxamine can inhibit both tryptophan oxidation and functional protein damage. Both of these findings stimulate new research questions, such as, is tryptophan oxidation the culprit responsible for the reduced blood levels of tryptophan in experimental models of diabetes, as well as in diabetic patients [9,10]? The second question is whether pyridoxamine supplementation can normalize the blood levels of tryptophan in diabetes.
机译:糖尿病与高血糖症和高酮血症有关,两者都会产生活性氧[1-5]。氧化应激和抗氧化防御机制之间存在不平衡状态,这种机制有利于糖尿病。累积的氧化应激会过氧化膜双层的脂质和蛋白质结构,导致多种细胞功能障碍,最终导致组织病理学改变。最近人们对氧化应激及其在糖尿病患者并发症发展中的作用产生了极大的兴趣[1-7]。在高血糖条件下,色氨酸的氧化与蛋白质分子功能改变之间的关系尚未见报道。在《自由基生物学与医学》杂志上,切特金及其同事证明了高水平的葡萄糖会引起溶菌酶中色氨酸残基的特异性氧化修饰,从而抑制其活性。纯化的白蛋白-Amadori(一种核糖衍生的模型糖基化中间体)也诱导了色氨酸残基的类似修饰。这表明蛋白质中色氨酸残基的氧化修饰是通过葡萄糖或蛋白质-Amadori中间体发生的,并导致了色氨酸残基的功能改变。蛋白质。这是具有生理意义的重要发现。这项研究还表明,吡ido胺可以抑制色氨酸氧化和功能蛋白破坏。这两个发现激发了新的研究问题,例如,在糖尿病实验模型以及糖尿病患者中,色氨酸氧化是否是导致色氨酸水平降低的罪魁祸首[9,10]?第二个问题是补充吡ido胺是否可以使糖尿病患者的色氨酸血液水平正常化。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号