...
首页> 外文期刊>Medicine and science in sports and exercise >Neuromuscular biomechanical modeling to understand knee ligament loading.
【24h】

Neuromuscular biomechanical modeling to understand knee ligament loading.

机译:神经肌肉生物力学建模以了解膝盖韧带负荷。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

PURPOSE: This article examines our use of EMG-driven neuromuscular biomechanical models to study how muscles stabilize the knee. EMG can be used to establish which activation patterns are used by people for knee stabilization. However, it does not reveal the effectiveness of these patterns. The EMG-driven models provide quantitative comparisons of the effectiveness of the different knee-stabilizing activation patterns. METHODS: Subjects performed static tasks and common sporting maneuvers that challenged knee joint stability. EMG, joint posture and motion, and external forces and moments were measured during these tasks. These data were used to calibrate the EMG-driven neuromuscular biomechanical model. We then used the model to predict the role of muscles in supporting varus and valgus moments at the knee. RESULTS: We found specific muscle activation patterns to support varus and valgus moments. The most potent activation pattern to stabilize the knee is when the hamstrings or quadriceps are required to generate flexion or extension moments, respectively. The next most effective knee-stabilizing pattern is cocontraction of the hamstring and quadriceps. The small biarticular muscles at the knee provided the least support of varus and valgus moments. In the sporting tasks, sidestepping was found to place the anterior cruciate ligament at high risk of injury. We found that the muscles are the main defense against knee ligament injuries in these tasks. CONCLUSION: Traditional biomechanical and neurophysiological methods have shown that there are specific activation patterns used to stabilize the knee. By also using the EMG-driven neuromuscular biomechanical model, we have shown how effective muscles are in stabilizing the knee. This modeling method provides a new tool to understand knee joint stabilization.
机译:目的:本文研究了我们使用肌电图驱动的神经肌肉生物力学模型来研究肌肉如何稳定膝盖。 EMG可用于确定人们使用哪些激活模式来稳定膝盖。但是,它没有揭示这些模式的有效性。由EMG驱动的模型提供了不同的膝盖稳定激活模式有效性的定量比较。方法:受试者执行静态任务和常见的运动技巧,挑战膝关节的稳定性。在这些任务中测量了肌电图,关节姿势和运动以及外力和力矩。这些数据用于校准肌电图驱动的神经肌肉生物力学模型。然后,我们使用该模型预测肌肉在支撑膝盖内翻和外翻力矩中的作用。结果:我们发现特定的肌肉激活模式可以支持内翻和外翻力矩。稳定膝关节最有效的激活方式是分别需要腿筋或股四头肌产生屈曲或伸展力矩。下一个最有效的膝盖稳定模式是the绳肌和股四头肌的共同收缩。膝盖处的双关节小肌肉对内翻和外翻力矩的支持最少。在体育锻炼中,发现回避使前​​十字韧带处于高受伤风险中。我们发现在这些任务中,肌肉是抵抗膝韧带损伤的主要防御手段。结论:传统的生物力学和神经生理学方法表明,存在特定的激活方式来稳定膝盖。通过使用肌电图驱动的神经肌肉生物力学模型,我们已经证明了肌肉在稳定膝关节方面的有效性。这种建模方法提供了一种了解膝关节稳定性的新工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号