首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Amine oxidation and the chemistry of quinone imines. Part II. 2,5-Di-methoxy-4-t-butylaniline
【24h】

Amine oxidation and the chemistry of quinone imines. Part II. 2,5-Di-methoxy-4-t-butylaniline

机译:胺氧化和醌亚胺的化学性质。第二部分.2,5-二甲氧基-4-叔丁基苯胺

获取原文
获取外文期刊封面目录资料

摘要

J.C.S. Perkin IAmine Oxidation and the Chemistry of Quinone Imines. Part 11.l 2,5-Di-methoxy-4-t- butylanilineBy R. K. Haynes and F. R. Hewgill," Department of Organic Chemistry, University of Western Australia, Nedlands,Western AustraliaThe oxidation of 2,5-dimethoxy-4-t-butylaniline (1 ) by alkaline ferricyanide or silver oxide gives 2,2'.5,5'-tetra-methoxy-4,4'-di-t-butylazobenzene (2) and 3,8-dimethoxy-2,7-di-t-butylphenazine (3). Chromatographicseparation of the oxidation products on neutral alumina gives rise to six other products, including three N-aryl-p-quinone irnines (4). (6), and (7), a tetrameric product (5), and a phenoxazone ( 8 ) . Evidence is presented for thestructures of these compounds, and their origin i s discussed.The formation of the phenazine (3) provides clear evidence for the cyclisation of an intermediate N-aryl-o-quinone di-imine (1 1) under these conditions.Isolation of the debutylated quinone imine (7) substantiatesassumptions made in the previous paper.THE oxidation of 2-anilinoanilines bearing a replaceablesubstituent, such as halogen or an alkoxy-group, in the2'-position invariably results in the formation of aphenazine, with the elimination of this substituent .2It has also been reported recently that oxidation of5- t- but yl-o-anisidine 374 andwith lead dioxide in refluxing benzene gives 2,7-di-t-butylphenazine. This result is of interest as thepresence of the o-alkoxy-group would prevent theformation of an intermediate 2-anilinoaniline, and itseems likely that under these conditions the expectedN-phenyl-o-quinone di-imine intermediate would haveThe Chemistry of Hetero-cyclic Compounds, Phenazines,' Interscience, New York, 1957,p.6.5- t- bu t yl-o-phenetidinePart I, R. K. Haynes and F. R. Hewgill, preceding paper. * G. A. Swan and D. G. I. Felton,undergone thermally induced cyclisation. To establishunequivocally whether such di-imines can cyclise tophenazines under the conditions of ferricyanide or silveroxide oxidation-a reaction that appeared not to takeplace during oxidation of 3-methoxy-4-t-butylaniline l-we have examined the oxidation of 2,5-dimethoxy-4-t-butylaniline (l), in which formation of a 2-anilinoanilineis similarly prevented. This amine was chosen becausethe expected phenazine (3) was available and otheroxidation products could readily be related to those ofthe monomethoxy-analogue .lOxidation of the aniline (1) with alkaline ferricyanide3 F.N. Mazitova and R. R. Shagidullin, Izvest. Akad. NaukS.S.S.R., Ser. khim., 1966, 1851 (Chem. Abs., 1957, 66, 75,774b).F. N. Mazitova, R. R. Shagidullin, and V. V. Abushaeva,Zhur. org. Khinz., 1967, 8, 878 (Chem. Abs., 1967, 67, 43,137a)1972 409and with silver oxide gave the products (2)-(8) in theyields shown. As in the previous oxidation,l unchangedaniline was always present at the end of the reactiontime when ferricyanide was used as oxidant, and noneof the quinonoid materials (4)-(8) were detected beforechromatographic fractionation of either oxidation mix-ture.Yields of the tetrameric compound (5) and of thephenoxazone (8) were not reproducible.(5) cn. 3'0Me0 moM e o wBu( 7 ) 0.3.0.5Figures represent yields () K,Fe(CN),, Ag,OPvoduct Identification.-The azobenzene (2) wasidentified spectrally, and synthesised by couplingdiazo t ised 2,5-dimet hox y-4-t-but ylaniline with 4-methoxy-3-t-butylphenol and methylating the product.The phenazine (3) produced was identical with thepreviously obtained pr0duct.lLike the corresponding product from 3-methoxy-4-t-butylaniline, the amino-quinone imine (4) could not becrystallised, but was similarly synthesised. Condens-ation of the aniline (1) with 6-imino-4-methoxy-3-t-butylcyclohexa-2,4-dien-l-one (9) gave the quinone imine(4) in 4 yield.The major product of this condensationwas compound (lo), which was identified by its n.m.r.and i.r. spectra, and was also formed by acid-catalysedcondensation of the amino-quinone imine (4) with (1).A small amount (1) of the phenazine (3) was alsoisolated from the condensation of (9) with (l), indicatingthat some addition of the aniline (1) had taken place atthe carbonyl group of (9) to produce the di-imine (ll),which had subsequently cyclised (Scheme 1).Ar = 2,5-(OMe),-4-ButC,H,SCHEME 1The assignment of structure (5) to the deep, indigo-blue product obtained from the ferricyanide oxidation isbased on the n.m.r. spectrum, which contained signalsfrom eight uncoupled ring protons, five methoxy-groups,and four t-butyl groups.Amine and quinone-carbonylabsorptions were absent from the i.r. spectrum. Thismaterial was formed when compound (10) was condensedwith the aniline (1).Compound (6) is the dimethoxy-analogue of theamino-quinone imine described in Part I,l which showedsimilar spectral characteristics. It was obtained in16 yield by condensation of 2-amino-5-t-butyl-l,4-benzoquinone with (1).The structure of compound (7) appears to be un-ambiguously suggested by its n.m.r. spectrum, whichdisplayed signals attributable to two aromatic and twovinylic protons, separate signals for four methoxy-groups,and only one t-butyl resonance. The i.r. spectrumshowed a single carbonyl absorption at 1652 cm-l, andthe U.V. spectrum A,, (log E) 213 (4.29), 298 (4.36), and487 (3.43) nm was similar to that of the syntheticquinone imine (12) A,,.(log E) 218 (4.04), 294 (4.22), and510 (3.43) nm.A r N M e o a A r MeoaN:;r 0( 1 4 ) (151Ar = 2,5-(OMe),-4-ButC6H2It was hoped that acid-catalysed condensation of theaniline (1) with 2,5-dimethoxy-fi-benzoquinone wouldgive (7), but in hot acetic acid two different productswere obtained. The first was identified as the anilino-quinone (13) by the presence of secondary amine (3320cm-l) and quinonoid (1662 and 1647 cm-l) bands in itsi.r. spectrum, and by the n.m.r. spectrum, which con-tained one t-butyl and three methoxy-signals. Spectro-scopic evidence indicated that the second compoundpossessed structure (14) or (15), but a distinction couldnot be made on this ground alone.However, when th410 J.C.S. Perkin Iquinone imine (7) was condensed with (1) in cold aceticacid, this material (14) or (15) was the sole product.This result is consistent with the proposed structure (7).The n.m.r. spectrum of the last quinonoid oxidationproduct (8) indicated the presence of two-t-butyl groups,one methoxy-group, and two vinylic and two aromaticprotons. The i.r. spectrum, with absorptions a t 1641and 1613 crn-l, indicated the presence of a quinonoidcarbonyl group.5 As empirical analysis showed thatthree oxygen atoms were present, one of these must bering-bridging, and this was confirmed by reductiveacetylation. The resultant diacetate had i.r. absorptionsattributable to 0-acetyl (1766 cm-l) and tertiary amide(1611 cm-l) groups, and hence the only structures thatfit the evidence are those of the two phenoxazones (8)and (16).The U.V. spectrum A,, 223, 263, 359, and474 nm is also characteristic of the phenoxazonesystem.6 On only this evidence a choice between theseisomers is not possible, though the substitution patternof the second (16) is hard to reconcile with that of theoriginal aniline (1).But QIm:;: 0 0(16 1Phenoxazones are hydrolysed in mild alkali to 2-hydroxy-N- (2-hydroxyphenyl) -$-benzoquinone imines, areaction which is instantly reversed by a ~ i d . ~ ~ ~ Thisproperty suggested a possible method for the chemicalcharacterisation of the product, for if the ring-openingreaction was conducted in methanol with potassiummethoxide, a possible pathway to a readily accessibleN-phenyl-quinone imine (12) would be manifested(Scheme 2).Consideration of the method of preparation0of phenoxazones from o-aminophenols and hydroxy-or methoxy-quinones suggested that isolation andindependent synthesis of the intermediate quinone iminederived from (17) would be difficult, and the subsequentmethylation step was therefore included. The reactionshould thus yield (12) from ($9, or the isomer if thephenoxazone were (16). Unfortunately, only a smallquantity of dark brown gum was obtained, but thisexhibited the same behaviour on t.1.c. as the syntheticquinone imine (12). This material and its isomer werereadily prepared by acid-catalysed condensation of2-met hoxy-5- t -but yl-$-benzoquinone with 2,5-di-methoxy-4-t-butylaniline (1) and 2,4-dimethoxy-5-t-butylaniline, respectively.The phenoxazone was there-fore considered to have structure (8), and this wasconfirmed by the synthesis to be described in Part 111.DISCUSSIONAs was shown by t.l.c., the phenazine (3) was presentin both oxidations of (1) prior to chromatography, andthus the di-imine ( l l ) , which must be intermediate in itsformation, is able to undergo cyclisation at room tem-perature. The suggested sequence of reactions leadingto the phenazine is shown in Scheme 3. This reactioncontrasts with the behaviour of the dimethoxy-analogueof (1 1) .l Thus, the presence of the ortho-methoxy-groupon the phenyl portion of (11) greatly facilitates cyclis-ation.This has already been noted in connection withthe oxidation of similarly substituted 2-anilinoaniline~,~and is apparently a consequence of the ease of elimin-ation of an alcohol or a hydrogen halide, resulting in thedirect production of an aromatic system. Where nosuitable leaving group is present, the immediate resultof such a cyclisation is merely a dihydro-compound. Amajor factor influencing the cyclisation of compounds-MeOH ISCHEME 3such as (1 1) may be electron release by the ortho-methoxy-group and this would certainly be so in an acid-catalysedreaction.The di-imine (1 1) is also considered to be the precursorof compound (5) and of the quinone imine (6). Form-ation of the latter is easily explained as the result ofaddition of water to the di-imine (11) followed by loss ofmethanol.Compound (5) was only obtained from theferricyanide oxidation, and this is ascribed to thepresence of unchanged aniline (1) , which could condenseeither with any of the quinone imine (10) that may havebeen produced in the oxidation, or with the di-imine (11)as shown in Scheme 4. In connection with the lattersuggestion, if cyclisation of (20) occurs in the alternative5 J. F. Corbett, Spectrochim. Acta, 1965, 21, 1411.6 W. Schafer, Progr. Org. Chem., 1964, 6, 135.7 W. Sch2ifer and H. Schlude, Tetrahedron Letters, 1968, 21611972 41 1sense to give (21), in which the quaternary methoxy-group is not conjugated with any other methoxy-group,a second condensation with the aniline (1) will notproduce compound (5).A rI OMeBut a I , D B " tMe0 / OMe(27 1I OMeArH+ -MeOH 1 Me0 O O M e /But(20)A rAr = 2,4-(OMe),-4-ButC,H,SCHEME 4The only obvious precursor of the phenoxazone (8)appears to be the N-phenyl-o-quinone imine (22), whichwould result from hydrolysis of the di-imine (11).Thesuggested reaction sequence is shown in Scheme 5.H+l I-.+ItOMe 2Ring closure of compounds such as (23), resulting fromcondensation of o-aminophenols with hydroxy- 6 ormethoxy-quinones to the hemiacetal (24), is formallyanalogous. The possibility of further hydrolysis of theo-quinone imine (22) to the $-quinone imine (25) andcyclisation of the latter to the phenoxazone must also beconsidered, but the failure of the amino-quinone imine(6) to cyclise under the conditions of its isolationindicates that this is an unlikely pathway.H H(23) ( 2 4 ) OHThe formation of the amino-quinone imine (4) duringchromatography of the ferricyanide oxidation productsparallels the formation of the related compound from3-metho~y-4-t-butylaniline.~ The suggested sequence isshown in Scheme 6, and again invokes preliminary paracarbon-nitrogen coupling, followed by rearrangement ofNHH+? NH" 2 0- 2MeOHAr = 2,5-(OMe) ,-4-ButC,H,SCHEME 6the iminocyclohexadiene (26) so produced.Whereasoxidation was subsequent to the hydration of thecarbonium ion in the formation of the related compoundfrom the monomethoxy-analogue, elimination ofmethanol is all that is required in the present case.The isolation of the debutylated quinone imine (7)substantiates the assumptions made in both this and theprevious paper concerning the involvement of imino-cyclohexadienes e.g.(26). The least obscure pathwayto ( 7 ) is shown in Scheme 7, and involves a type ofdebutylation for which there is ample precedent 899 in* T. Matsuura and H. J. Cahnmann, J. Amer. Chew. SOC.,1960, 82, 2055.9 .C. J. R. Adderley and F. R. Hewgill, J . Chem. SOC. (C),1968, 1438. SCHEME 412 J.C.S. Perkin Ithe reactions of aryloxycyclohexadienones produced bythe oxidative coupling of phenols.OH0 x.( 7 ) Me0NHAr+Me,C*Ar = 2,5-(OMe),-4-ButC6H,SCHEME 7EXPERIMENTALGeneral details were as described in the previous paper.lLight petroleum had b.p.56-60". 2,5-Dimethoxy-4-t-butylaniline (l), m.p. 8A85° (1it.,lo 84-85") was preparedas previously described. Its acetate crystallised as needles,m.p. 137.5-138.5" (from ether-light petroleum) (Found : C,66.7; H, 8.35.Oxidation of 2,5-Dimethoxy-4-t-butylaniline (1) .--(.a) Bypotassium ferricyanide. The aniline (6.28 g) and oxidant(21.7 g) were treated as described for 3-methoxy-4-t-butyl-aniline,l and gave a dark crystalline residue. Removal ofmaterial soluble in light petroleum left 2,2', 5,5'-tetra-~nethoxy-4,4'-di-t-butylazobenzene (2) (640 mg) as orangeplates, m.p. 243-245" (from chloroform-ether) (Found : C,69.3; H, 8.3; N, 7.0. C,,H,,N,O, requires C, 69.5; H,8.3; N, 6-8), Amaxe (CHC1,) 263, 328, 428, and 463sh nm(log E 3.88, 3-73, 3-84, and 3-81), 7 (CDCl,) 2.72 (2 x ArH),3.01 (2 x ArH), 5.96 (2 x OMe), 6-08 (2 x OMe), and8.60 (2 x But).Chromatography of the light petroleumextract on alumina gave five fractions.Fraction (i), eluted with light petroleum-ether (1 : 0 to4 : 1), contained 3,8-dimethoxy-2,7-di-t-butylphenazine (3)(532 mg), m.p. and mixed m.p. 204-205", and a smallamount of the azobenzene (2).Fraction (ii), eluted with light petroleum-ether (7 : 3 to1 : 1) gave material which had a red fluorescence on t.1.c.plates under U.V. light. This was rechromatographed onsilicic acid. Elution with light petroleum-ether (1 9 : 1) gave8-methoxy-2,7-di-t-butyl-3H-fihenoxazin-3-one (8) (1 20 mg) asred needles, m.p. 124-126" (from light petroleum) (Found:C, 74.35; H, 7.4; N, 4-45.C21H25NO3 requires C, 74.3; H,7.4; N, 4*1y0), vmaX. 1641m and 1613s cm-1, A,,,. (cyclo-hexane) 223, 263, 282sh, 346sh, 359, and 474 nm (log E 4.13,4-05, 3.51, 3.99, 4.03, and 4.19), 7 (CCl,) 2.87 (2H), 2-94 and3.98 (ZH), 6.07 (OMe), and 8.59 and 8.62 (2 x But). Rapidwork was necessary during isolation of this material as itdecomposed on chromatographic adsorbents to a red gum,which contained no methoxy-substituent (n.m.r.) .Fraction (iii), eluted with light petroleum-ether (1 : l),deposited the aniline (1) from n-pentane. The motherliquors were chromatographed on silic acid. Elution withlight petroleum-ether (7 : 3) gave a brownish red material,ClgH2103 requires C, 66.9; H, 8.4).which was purified by preparative t.1.c.on alumina inbenzene-hexane ( 1 : 1) to give 2-amino-4- (2,5-dimethoxy-4-t-butyl~henylimino)-5-t-butyEcyclohexa-2,5-dien-l-one (4)(30 mg) as a brownish red gum, vmx. 3496m, 3388m, 1661s,and 1631s cm-l, 7 (CDC1,) 3-06 and 3.78 (2 x ArH), 3.47and 4-19 (2 vinylic H), 5.67br (NH,), 6-23 and 6-30 (2 xOMe), and 8.53 and 8.60 (2 x But).Fraction (iv), eluted with ether, deposited crystals (1.88 g)of the aniline (1) from light petroleum. Chromatographyof the mother liquors on alumina and elution with lightpetroleum-ether (9 : 1) gave lO,N-bis-(2,5-dimethoxy-4-t-butylpheny 1) -7-nzethoxy- 3,8-di-t-butyl- 1OH-phenazin-2-kine(5) (109 mg) as blue needles, m.p. 182-183" (from lightpetroleum) (Found: C, 75.0; H, 8-5; N, 5.55.C,5H,gN,0,requires C, 75.0; H, 8-2; N, 5-8), A,, (cyclohexane) 227,307, and 570 nm (log E 3.90, 3.79, and 4-09), T (CC1,) 2.87,2.92, 3-11, 3-75, 3.91, and 4-92 (6H), 3.41 (2H), 6.07, 6.32,6.37, 6.49, and 6-56 (5 x OMe), and 8-45, 8-63, 8-72, andFraction (v), eluted with ether-chloroform (1 : 0 to 7 : 3)was separated from the aniline (1) and dark colouredmaterials by fractional crystallisation from light petroleum-ether. The first crops gave 4-( 2,5-dimethoxy-4-t-butyl-~henylimino)-2,5-dimethoxycyclohexa-2,5-dien-l-one (7) (10mg) as pink needles, m.p. 207-209" (from ether-chloroform)(Found: C, 66.4; H, 7.15; N, 4.05. C,,H,,NO, requiresC, 66.8; H, 7.0; N, 3-9), vmx. 1652s cm-l, A,, (cyclo-hexane) 213, 298, and 487 nm (log E 4.29, 4.36, and 3-43),(CDC1,) 3-07 and 3-54 (2 x ArH), 4.09 (2 vinylic H), 6.08,6.23, 6.26, and 6.34 (4 x OMe), and 8.60 (But).T.1.c.of a light petroleum solution of the oxidationproduct prior to chromatographic separation showed thephenazine (3) and the azobenzene (2) only. Yields ofcompounds (5) and (8) were variable.(b) By silver oxide. The aniline (1) (6.28 g) was oxidised bysilver oxide (16 g) in ether as described for 3-methoxy-4-t-buty1aniline.l The dark crystalline residue was fractionatedas in (a) to give the azobenzene (2) (860 mg), the phenazine(3) (1.97 g), the phenoxazone (8) (18 mg), and the quinoneimine (7) (27 mg). In addition to these products, ether-chloroform (7 : 3) eluted material which was rechromato-graphed on alumina, and crystallised from ether-lightpetroleum as red needles (7 mg), m.p.147.5-148-5", of5-amino-4- ( 2,5-dinzethoxy-4-t-butylphenylimino) -2-t-butyl-cyclohexa-2,5-dien-l-one (6) (Found: C, 71.4; H, 8.1; N,7.6. C,,H,,N,O, requires C, 71.3; H, 8.2; N, 7.6y0),v,=. 3497m, 3374m, 1646m, and 1623s cm-l, A,, (cyclo-hexane) 221, 296, and 470 nm (log E 4.26, 4.26, and 3.54),7 (CDC1,) 3-06 and 3.58 (2 x ArH), 3.42 and 4.34 (2 vinylicH), 4-73br (NH,), 4.20 and 4.23 (2 x OMe), and 8-58 and8.78 (2 x But).T.1.c. prior to chromatographic separation of the oxidationproducts showed that the quinonoid products were formedduring chromatography. None of the unchanged aniline(1) or the blue compound (5) could be detected. 4-Methoxy-5-t-butyl-1,2-benzoquinone was not formed ineither oxidation.2,2',5,5'-Tetramethoxy-4,4'-di-t-butylazobenzene (3) .-2,5-Dimethoxy-4-t-butylaniline (1) (210 mg) was diazotised inacetic acid and coupled with 4-methoxy-3-t-butylphenol.The resultant 2-hydroxy-2',5,5'-trimethoxy-4,4'-di-t-butylazo-benzene (340 mg) crystallised as red-brown plates, m.p.254-256" (from chloroform-ether) (Found: C, 68.6; H,8-81 (4 X But).10 F.R. Hewgill, J . Chem. SOG., 1962, 49871972 4138.35. C,,H,,N,O, requires C, 69.0; H, 8.05y0), T (CDCl,)2.61, 2.68, 2.99 and 3.11 (4 x ArH), 5.97 (OMe), 6.02(2 x OMe), and 8.57 and 8.58 (2 x But). With dimethylsulphate and potassium carbonate in refluxing acetoneduring 18 h, the azophenol gave a tetramethoxyazobenzeneidentical with compound (2).Condensation of 2,5-0imethoxy-4-t-butylaniline (1) .-(a) With 6-imino-4-methoxy-3-t-butylcycEohexa-2,4-dien-l-one(9). The o-quinone imine (9) from the parent amino-phenol (390 mg) was heated with the aniline (1) (400 mg)in acetic acid on a steam-bath for 3 min.Addition of waterand extraction of the product with ether gave a deep redresidue which deposited red needles (160 mg) from lightpetroleum. Recrystallisation from chloroform-ether gave2- (2,5-dimethoxy-4-t-butylanilino) -4- (2,5-dimethoxy-Ct-butyI-~henylimino)-5-t-butylcyclohexa-2,5-dien-l-one (lo), m.p.225-227" (Found: C, 72.2; H, 8.2; N, 5.0. C,,H,,N,O,requires C, 72.6; H, 8.2; N, 5.0), vmX. 3316m, 1653s, and1628s cm-l, T (CDC1,) 2.47br (NH), 3.10, 3.20, 3-52, and 3.71(4H), 3.36 (2H), 6-18, 6.26, 6.31, and 6.56 (4 x OMe), and8.49, 8.60, and 8-68 (3 x But).Concentration of the light petroleum mother liquors gaveunidentified orange-yellow crystals (54 mg) which de-composed a t ca.230" to a blue liquid. Chromatography ofthe residual mother liquors on alumina and elution withlight petroleum-ether (1 : 0 to 4 : 1) gave material whichwas separated by preparative t.1.c. on silica gel in methanol-benzene (3 : 2) into two fractions. The first of thesedeposited crystals (8 mg) of 3,8-dimethoxy-2,7-di-t-butyl-phenazine (3), m.p. and mixed m.p. 204-205O (from lightpetroleum). The second fraction gave unidentified paleyellow needles (20 mg), m.p. 181-182". More polarsolvents eluted small amounts of the anilino-quinone imine(lo), and then a deep brown gum (30 mg), identified as theamino-quinone imine (4) by i.r.spectroscopy after pre-parative t.1.c.(b) With the amino-quinone imine (4) and the anilino-quinone itnine (10). Reaction of the amino-quinone imine(4) with the aniline (1) in acetic acid during 7 h, dilutionwith water, and extraction with ether gave the anilino-quinone imine (10). The latter (10 mg) when treated withan excess of the aniline (1) in acetic acid during 6 h gave ablue product (3 mg) identical with the oxidation product(5) of the aniline (1).(c) W-ith 2-amino-5-t-butyl-1,4-benzoquinone. Reaction ofthe aniline (1) (209 mg) with this quinone (179 nig) in aceticacid for 5 h on a steam-bath gave a dark red solution. Thiswas diluted with water and extracted with ether; theextract was evaporated and the residue was chroniato-graphed on alumina.Elution with light petroleuni-ether(1 : 0 to 4 : 1) gave the unchanged quinone (80 mg). Ethereluted material (60 mg) identical with the amino-quinoneimine (6) obtained from the oxidation of the aniline (1).(d) With 2,5-dimethoxy- 1,4-benzoquinone, A solution ofthe aniline (1) (627 mg) and this quinone (504 mg) in aceticacid (30 ml) was heated on a steani-bath for 30 min. Thepurple solution was poured into water and the crystallineprecipitate was filtered off and extracted with boiling etherto leave a residue of unchanged quinone. The extract wasevaporated and the residue was fractionally crystallisedfrom ether-light petroleum to give first 5- (or 2)-methoxy-2-(or 5)-2,5-dimethoxy-4-t-butylanilino)-4-( 2,5-dimethoxy-4-t-butylphenylimino)cyclohexa-2,5-dien-l-one ( 14) or (15)(200 mg) as purple prisms, m.p.212-214' (Found: C,68-9; H, 7.6; N, 5.6. Calc. for C,,H,,N,O,: C, 69.4; H,7-5; N, 5.2), vrnZ 3307s, 1649s, and 1629m cm-l, T (CDC1,)3-15, 3-18, 3.33, 3.56, 3-73, and 4-03 (6H), 6.04, 6-20, and6.53 (3 x OMe), 6-28 (2 x OMe), and 8.62 and 8.69 (2 xBut). The more soluble component was 5-( 2,5-dimethoxy-4-t-butylanilino)-2-nzethoxy-l,4-benzoquinone (13), obtainedas purple needles (201 mg), m.p. 149-150" (Found: C,66.3; H, 6.9; N, 4.4. C19H,,N05 requires C, 86.1; H, 6.7;N, 4.1y0), v,, 3320m, 1662s, and 1647sh cni-l, T (CDCl,)2.02 (NH), 3.08 and 3-10 (2 x ArH), 3.89 and 4-13 (2vinylic H), 6.13 (2 x OMe), 6-18 (OMe), and 8.61 (But).T.1.c.of the mother liquors showed the presence of un-changed aniline (l), but not of the quinone imine (7).(e) With 4- (2,5-dimethoxy-4-t-butyl~henyZin~i~zo) -2,5-di-11aethoxycyclohexa-2,5-dien- l-one (7). Addition of the aniline(1) (4 mg) in acetic acid (1-5 ml) to the quinone imine (7)(7 mg) in acetic acid (1.5 ml) at room temperature gave adeep blue solution. After 15 min this was poured intowater. Extraction with ether and evaporation of theextract gave a purple residue, which was recrystallised fromether-light petroleum to give material (7 mg) identical with(14) or (15) obtained in (d).(f) With B-methoxy-2-t-butyl-l,4-benzoquinone. Equi-molar solutions of the aniline (1) and the quinone in aceticacid were mixed and heated on a steam-bath for 15 min.The cooled solution was poured into water and extractedwith ether.Evaporation of the extract and recrystallisationof the residue from ether-light petroleum gave 4-(2,5-dimethoxy-4-t-butylphenylimino) -5-methoxy- S-t-butylcyclo-hexa-2,5-dien-l-one (12) as dark reddish brown prisms,m.p. 108-109-5° (Found: C, 71.55; H, 7.8; N, 3.6.C,,H,,NO, requires C, 71.7; H, 8.1; N, 3.6y0), vmX1635s cm-l, A,, (cyclohexane) 218, 294, and 510 nm (log E4.04, 4.22, and 3*43), T (CDCl,) 3.14, 3.47, and 3.62 (3H),4-30 (vinylic H), 6.20, 6-22, and 6.30 (3 x OllIe), and 8.62and 8.82 (2 x But).Reactions of 8-Methoxy-2,7-di-t-butyl-3H-phenoxazin-3-one(8) .-(a) Reductive acetylation. With zinc dust and sodiumacetate in gently refluxing acetic anhydride the phenoxazone(8) gave, after 10 min, S-acetoxy-lO-acetyZ-8-methoxy-2,7-di-t-butylphenoxazine, needles, softening a t 94-100" to a viscousliquid (Found: C, 70.9; H, 7-5; N, 3-1. C,,H,,NO,requires C, 70-6; H, 7.3; N, 3.3), vrnax. 1766s and 1691scm-l, T (CC1,) 2-62, 2.99, 3.04, and 3.25 (4 x ArH), 6.17(OMe), 7.67 (2 x COiLle), and 8.65 (2 x But).(b) Methylation. The phenoxazone (8) (66 mg) washeated under gentle reflux for 4 h in dry methanol (14 ml)containing potassium methoxide (90 mg) . The resultingdeep blue mixture was cooled to O", then potassium car-bonate (3 g) was added, followed by dimethyl sulphate,dropwise, until the evolution of carbon dioxide ceased. Afurther quantity (70 mg) of dimethyl sulphate was thenadded, and the mixture was heated under reflux for 5 h.After filtration the solution was evaporated to drynessunder reduced pressure, leaving a brown gum. Applicationof this to alumina and elution with light petroleum-ether(7 : 3) gave ca. 3 mg of a brown-purple gum. This couldnot be purified without considerable loss, but the RF values(t.1.c.) were identical with those of the quinone imine (12).We thank General Motor's-Holden Pty. Ltd. for a Fellow-ship (to R. K. H.), and the Australian Research GrantsCommittee for financial assistance.1/1499 Received, August 18th, 1971
机译:J.C.S. Perkin IAmine 氧化和醌亚胺的化学。第 11.l 部分 2,5-二甲氧基-4-叔丁基苯胺作者:R. K. Haynes 和 F. R. Hewgill,“西澳大利亚大学有机化学系,西澳大利亚州尼德兰兹分校碱性铁氰化物或氧化银氧化 2,5-二甲氧基-4-叔丁基苯胺 (1) 得到 2,2'.5,5'-四甲氧基-4,4'-二叔丁基偶氮苯 (2) 和 3,8-二甲氧基-2,7-二叔丁基吩嗪 (3)。色谱分离中性氧化铝上的氧化产物可生成其他六种产物,包括三种 N-芳基对醌 irnines (4)。(6)和(7)、四聚体产物(5)和吩沙宗(8)。为这些化合物的结构提供了证据,并讨论了它们的起源。吩嗪 (3) 的形成为在这些条件下中间体 N-芳基-邻-醌二亚胺 (1, 1) 的环化提供了明确的证据。分离初次化的醌亚胺 (7) 证实了前一篇论文中的假设。2-苯胺酰胺在2'-位置上氧化带有可替换的取代基,如卤素或烷氧基,总是导致阿芬嗪的形成,并消除了这种取代基.2最近也有报道,5-t-但基-o-茴香胺374和二氧化铅在回流苯中得到2,7-二叔丁基吩嗪.这一结果很有意思,因为邻烷氧基的存在会阻止中间体2-苯胺酰苯胺的形成,并且似乎在这些条件下,预期的N-苯基-邻醌二亚胺中间体将具有杂环化合物的化学,吩嗪,'Interscience,纽约,1957年,p.6.5- t-bu t-o-phenetidine部分I,R.K.Haynes和F.R.Hewgill,前一篇论文。* G. A. Swan 和 D. G. I. Felton,经历了热诱导环化。为了明确确定这种二亚胺是否可以在铁氰化物或银氧化物氧化的条件下环化托吩嗪 - 在3-甲氧基-4-叔丁基苯胺l的氧化过程中似乎不会发生的反应 - 我们研究了2,5-二甲氧基-4-叔丁基苯胺(l)的氧化,其中2-苯胺酰苯胺的形成同样被阻止。之所以选择这种胺,是因为预期的吩嗪 (3) 是可用的,并且其他氧化产物很容易与单甲氧基类似物的氧化产物有关。阿卡德。NaukS.S.S.R., Ser. khim., 1966, 1851 (Chem. Abs., 1957, 66, 75,774b).F. N. Mazitova, R. R. Shagidullin, and V. V. Abushaeva,Zhur.Khinz., 1967, 8, 878 (Chem. Abs., 1967, 67, 43,137a)1972 409并用氧化银得到产物(2)-(8)所示的产率。与前述氧化一样,当使用铁氰化物作为氧化剂时,l未改变的苯胺始终存在于反应时间结束时,并且在任一氧化混合物的色谱分馏之前均未检测到类喹啉材料(4)-(8)。四聚体化合物(5)和吩沙宗(8)的产量不可重现。(5)中国。3'0Me0 moM e o wBu( 7 ) 0.3.0.5图代表产率 (%) [K,Fe(CN),, Ag,O]Pvoduct 鉴别.-偶氮苯(2)光谱鉴定,通过重氮唑与4-甲氧基-3-叔丁基苯酚偶联合成2,5-二甲基己Y-4-T-但基苯胺,并将产物甲基化.生成的吩嗪(3)与先前获得的pr0duct.l与3-甲氧基-4-叔丁基苯胺的相应产物相同,氨基醌亚胺(4)不能结晶,但合成相似。苯胺(1)与6-亚氨基-4-甲氧基-3-叔丁基环己-2,4-二烯-l-酮(9)缩合得到醌亚胺(4)的收率为4%。这种缩合的主要产物是化合物(lo),通过其n.m.r.和i.r.光谱进行鉴定,并且也是通过氨基醌亚胺(4)与(1)的酸催化缩合形成的。从(9)与(l)的缩合中也分离出少量(1%)吩嗪(3),表明苯胺(1)在(9)的羰基上发生了一些加成,以产生二亚胺(ll),随后环化(方案1)。Ar = 2,5-(OMe),-4-ButC,H,SCHEME 1铁氰化物氧化得到的深层靛蓝产物的结构(5)的分配是基于n.m.r.光谱,其中包含来自8个不偶联环质子、5个甲氧基和4个叔丁基的信号。I.R.谱图中不存在胺和醌-羰基吸附。当化合物(10)与苯胺(1)缩合时,形成这种材料。化合物(6)是第I,l部分中描述的氨基醌亚胺的二甲氧基类似物,具有相似的光谱特性。2-氨基-5-叔丁基-l,4-苯醌与(1)缩合得到16%的收率。化合物(7)的结构似乎由其n.m.r.光谱明确提出,该光谱显示可归因于两个芳香族质子和两个乙烯基质子的信号,四个甲氧基的单独信号,以及只有一个叔丁基共振。i.r.光谱在1652 cm-l处显示单一羰基吸收,紫外线光谱[A,,(log E)213(4.29),298(4.36)和487(3.43)nm]与合成醌亚胺(12)[A,,.(log E) 218 (4.04), 294 (4.22), and 510 (3.43) nm]。A r N M e o a A r MeoaN:;r 0( 1 4 ) (151Ar = 2,5-(OMe),-4-ButC6H2希望用酸催化将苯胺(1)与2,5-二甲氧基-菲-苯醌缩合(7),但在热乙酸中得到了两种不同的产物。第一种被鉴定为苯胺-醌 (13),因为其中存在仲胺 (3320cm-l) 和类喹喹 (1662 和 1647 cm-l) 条带。频谱,以及 N.M.R. 频谱,其中包含一个叔丁基和三个甲氧基信号。光谱证据表明,第二种化合物具有结构(14)或(15),但不能仅凭这一点进行区分。然而,当 th410 J.C.S. Perkin Iquinone 亚胺 (7) 与 (1) 在冷乙酸中缩合时,该材料 [(14) 或 (15)] 是唯一的产物。该结果与所提出的结构(7)一致。最后一个喹啉氧化产物 (8) 的 n.m.r. 光谱表明存在两个叔丁基、一个甲氧基、两个乙烯基和两个芳香质子。吸收率为1641和1613 crn-l的i.r.谱图表明存在喹喹类羰基.5由于经验分析表明存在三个氧原子,其中一个必须白流桥接,这通过还原乙酰化得到证实。所得二乙酸酯具有可归因于 0-乙酰基 (1766 cm-l) 和叔酰胺 (1611 cm-l) 基团的 ir. 吸收,因此唯一符合证据的结构是两种苯噁酮 (8) 和 (16) 的结构。紫外线光谱 [A、、223、263、359 和 474 nm] 也是吩噁酮系统的特征。6 仅凭这一证据,就不可能在这些异构体之间进行选择,尽管第二种异构体的取代模式(16)很难与原始苯胺的取代模式相协调(1)。但 QIm:;: 0 0(16 1 苯噁酮在温和碱中水解成 2-羟基-N-(2-羟基苯基)-$-苯醌亚胺,反应立即被 a ~ i d 逆转 . ~ ~ ~ 这种性质表明了一种可能的产物化学表征方法,因为如果在甲醇中与甲醇钾进行开环反应,则将显示出一条通向易于获得的 N-苯基醌亚胺 (12) 的可能途径(方案 2)。考虑从邻氨基苯酚和羟基或甲氧基醌制备苯噁酮的方法,表明分离和独立合成源自(17)的中间醌亚胺是困难的,因此包括随后的甲基化步骤。因此,反应应从($9)或异构体(如果吩沙宗为(16)产生(12)。不幸的是,只获得了少量的深棕色树胶,但这在t.1.c上表现出相同的行为。作为合成醌亚胺 (12)。该材料及其异构体是用酸催化制备了2-二甲氧基-5-t-但基-$-苯醌与2,5-二甲氧基-4-叔丁基苯胺(1)和2,4-二甲氧基-5-叔丁基苯胺的缩合反应。因此,吩沙宗被认为具有结构(8),这在第111部分中描述的合成中得到了证实。建议的导致吩嗪的反应顺序显示在方案3中。该反应与二甲氧基类似物(1 1)的行为形成鲜明对比.l 因此,(11)的苯基部分邻甲氧基基团的存在极大地促进了环化。这已经注意到与类似取代的2-苯胺苯胺~,~的氧化有关,并且显然是由于易于消除醇或卤化氢的结果,导致直接产生芳香族体系。如果不存在合适的离去基团,这种环化的直接结果只是二氢化合物。影响化合物-MeOH ISCHEME 3 环化的主要因素,例如 (1, 1) 可能是邻甲氧基释放的电子,这在酸催化反应中肯定是这样。二亚胺 (1, 1) 也被认为是化合物 (5) 和醌亚胺 (6) 的前体。后者的形成很容易解释为向二亚胺(11)中加入水,然后损失甲醇。化合物(5)仅从铁氰化物氧化中获得,这归因于存在未改变的苯胺(1),其可以与氧化中可能产生的任何醌亚胺(10)或与二亚胺(11)缩合,如方案4所示。关于后一种建议,如果(20)的环化发生在备选方案中5 J. F. Corbett, Spectrochim.Acta, 1965, 21, 1411.6 W. Schafer, Progr.Org. Chem., 1964, 6, 135.7 W. Sch2ifer and H. Schlude, Tetrahedron Letters, 1968, 21611972 41 1 给出 (21),其中季铵甲氧基不与任何其他甲氧基共轭,与苯胺 (1) 的第二次缩合不会产生化合物 (5)。A rI OMeBut a I , D B “ tMe0 / OMe(27 1I OMeArH+ -MeOH 1 Me0 O O M e /But(20)A rAr = 2,4-(OMe),-4-ButC,H,SCHEME 4苯噁酮 (8) 唯一明显的前体似乎是 N-苯基邻醌亚胺 (22),这是由二亚胺 (11) 水解产生的。建议的反应顺序如方案5.H+l I-.+ItOMe 2所述化合物的闭环,如(23),由邻氨基苯酚与羟基-6或甲氧基醌缩合到半缩醛(24)产生,形式上是类似的。还必须考虑茶醌亚胺(22)进一步水解为$-醌亚胺(25)的可能性,以及后者环化为吩沙宗的可能性,但氨基醌亚胺(6)在其分离条件下无法循环表明这是一条不太可能的途径。H H(23) ( 2 4 ) OH在铁氰化物氧化产物的色谱过程中氨基醌亚胺(4)的形成与3-甲基~y-4-叔丁基苯胺形成相关化合物的形成相似~ 建议的序列如图6所示,并再次调用初步的对烃-氮偶联,然后重排NHH+?NH“ 2 0- 2MeOHAr = 2,5-(OMe) ,-4-ButC,H,SCHEME 6 由此制得的亚氨基环己二烯 (26)。鉴于氧化是在碳离子水合形成相关化合物之后从单甲氧基类似物形成的,因此在本例中只需要消除甲醇即可。分离出的初酰化醌亚胺 (7) 证实了本文和前一篇论文中关于亚氨基-环己二烯参与的假设 [例如(26)]。方案 7 中显示了最不晦涩的通路 ( 7 ),它涉及一种在* T. Matsuura 和 H. J. Cahnmann, J. Amer. Chew 中有充分先例 899 的首次演基化。SOC.,1960, 82, 2055.9 .C. J. R. Adderley 和 F. R. Hewgill, J .化学SOC.(C),1968, 1438.方案 412 J.C.S.Perkin I酚氧化偶联产生的芳氧基环己二烯酮的反应。OH0 x.( 7 ) Me0NHAr+Me,C*Ar = 2,5-(OMe),-4-ButC6H,SCHEME 7实验的一般细节如前文所述.l轻质石油有b.p.56-60“.如前所述制备2,5-二甲氧基-4-叔丁基苯胺(l),熔点8A85°(1it.,lo 84-85“)。其醋酸盐结晶为针状,熔点137.5-138.5“(来自乙醚轻质石油)(发现:C,66.7;H, 8.35.2,5-二甲氧基-4-叔丁基苯胺的氧化 (1) .--(.a) 铁氰化副钾.苯胺(6.28 g)和氧化剂(21.7 g)按照3-甲氧基-4-叔丁基苯胺,l的说明进行处理,并得到深色结晶残留物。除去可溶于轻质石油的物质,留下2,2',5,5'-四-~烯氧基-4,4'-二叔丁基偶氮苯(2)(640毫克)作为橙板,熔点243-245“(来自氯仿醚)(发现:C,69.3;H,8.3;N,7.0。C,,H,,N,O,要求C,69.5;H,8.3;N、6-8%)、Amaxe (CHC1)、263、328、428 和 463sh nm(log E 3.88、3-73、3-84 和 3-81)、7 (CDCl)、2.72 (2 x ArH)、3.01 (2 x ArH)、5.96 (2 x OMe)、6-08 (2 x OMe) 和 8.60 (2 x But)。氧化铝上轻质石油提取物的色谱法得到五个馏分。用轻质石油醚(1:0至4:1)洗脱的馏分(i)含有3,8-二甲氧基-2,7-二叔丁基吩嗪(3)(532 mg)、熔点和混合熔点204-205“,以及少量偶氮苯(2)。用轻质石油醚(7:3至1:1)洗脱的馏分(ii)得到在t.1.c上具有红色荧光的材料。紫外线下的板。这是重层析的肿瘤酸。用轻质石油醚(1 9 : 1)洗脱得到8-甲氧基-2,7-二叔丁基-3H-非胡嗪-3-酮(8)(1 20 mg)asred needles,熔点124-126“(来自轻质石油)(发现:C,74.35;H,7.4;N,4-45.C21H25NO3需要C,74.3;H,7.4;N, 4*1y0), vmaX.1641m 和 1613s cm-1,A,,,.(环己烷)223、263、282sh、346sh、359 和 474 nm(log E 4.13、4-05、3.51、3.99、4.03 和 4.19)、7 (CCl)、2.87 (2H)、2-94 和 3.98 (ZH)、6.07 (OMe) 以及 8.59 和 8.62 (2 x But)。在分离该材料时,由于该材料在色谱吸附剂上分解为不含甲氧基取代基(n.m.r.)的红胶,因此需要快速工作。馏分(iii)用轻质石油醚(1:l)洗脱,从正戊烷中沉积出苯胺(1)。母液在硅酸上色谱。用轻质石油醚(7 : 3)洗脱得到棕红色物质,ClgH2103需C,66.9;H,8.4%).用制备的t.1.c.on氧化铝苯己烷(1:1)纯化,得到2-氨基-4-(2,5-二甲氧基-4-叔丁基~炔基~炔基)-5-叔丁基环己-2,5-二烯-l-酮(4)(30 mg)作为棕红色胶,vmx.3496m、3388m、1661s 和 1631s cm-l、7 (CDC1)、3-06 和 3.78 (2 x ArH)、3.47 和 4-19 (2 乙烯基 H)、5.67br (NH)、6-23 和 6-30 (2 xOMe) 以及 8.53 和 8.60 (2 x But)。馏分(iv)用乙醚洗脱,从轻质石油中沉积出苯胺(1)的晶体(1.88 g)。氧化铝上的母液色谱法和用轻石油醚(9:1)洗脱得到lO,N-双-(2,5-二甲氧基-4-叔丁基苯1)-7-苯乙氧基-3,8-二叔丁基-1OH-吩嗪-2-激肽(5)(109mg)为蓝针,熔点182-183“(来自轻石油)(发现:C,75.0;H,8-5;N,5.55.C,5H,gN,0,需要C,75.0;H,8-2;N、5-8%)、A、(环己烷)227,307 和 570 nm(log E 3.90、3.79 和 4-09)、T (CC1,) 2.87、2.92、3-11、3-75、3.91 和 4-92 (6H)、3.41 (2H)、6.07、6.32、6.37、6.49 和 6-56 (5 x OMe) 和 8-45、8-63、8-72 和馏分 (v),用醚-氯仿(1 : 0 至 7 : 3) 洗脱,通过轻质石油醚分馏结晶从苯胺 (1) 和深色材料中分离出来。第一批作物将4-(2,5-二甲氧基-4-叔丁基-~芸氨基)-2,5-二甲氧基环己-2,5-二烯-l-酮(7)(10mg)作为粉红色针叶,熔点207-209“(来自乙醚氯仿)(发现:C,66.4;H,7.15;N,4.05。C,,H,,NO, 要求C, 66.8;H, 7.0;N,3-9%),vmx。1652s cm-l、A、(环己烷)213、298 和 487 nm(log E 4.29、4.36 和 3-43)、(CDC1)、3-07 和 3-54 (2 x ArH)、4.09(2 乙烯基 H)、6.08、6.23、6.26 和 6.34 (4 x OMe) 和 8.60 (But)。T.1.c.的氧化产物在色谱分离前的轻质石油溶液中仅显示吩乃静(3)和偶氮苯(2)。化合物(5)和(8)的产率是可变的。(b) 氧化银。苯胺(1)(6.28 g)被氧化银(16 g)在乙醚中氧化,如3-甲氧基-4-叔丁基1苯胺所述。l 将深色结晶残基分馏为(a)中,得到偶氮苯(2)(860 mg)、吩嗪(3)(1.97 g)、苯沙宗(8)(18 mg)和醌亚胺(7)(27 mg)。除这些产物外,醚-氯仿(7:3)洗脱的材料在氧化铝上重色图,并从醚-轻石油结晶为红针(7 mg),熔点147.5-148-5“,5-氨基-4-(2,5-二硝基乙氧基-4-叔丁基苯基亚氨基)-2-叔丁基-环己-2,5-二烯-l-酮(6)(发现:C,71.4;H,8.1;N,7.6.C,,H,,N,O,需要C,71.3;H,8.2;N, 7.6y0),v,=.3497m、3374m、1646m和1623s cm-l、A、(环己烷)221、296和470 nm(log E 4.26、4.26和3.54)、7(CDC1)、3-06和3.58(2 x ArH)、3.42和4.34(2 vinylicH)、4-73br(NH)、4.20和4.23(2 x OMe)以及8-58和8.78(2 x But).T.1.c.在色谱分离氧化产物之前表明,在色谱分离过程中形成了类喹酮产物。未检测到未改变的苯胺(1)或蓝色化合物(5)。2,2',5,5'-四甲氧基-4,4'-二叔丁基偶氮苯(3).-2,5-二甲氧基-4-叔丁基苯胺(1)(210mg)重氮化乙酸,与4-甲氧基-3-叔丁基苯酚偶联.所得2-羟基-2',5,5'-三甲氧基-4,4'-二叔丁偶氮苯(340mg)结晶为红棕色板,熔点254-256“(来自氯仿醚)(发现:C,68.6;H,8-81 (4 X But).10 F.R. 休吉尔, J .化学 SOG., 1962, 49871972 4138.35.C,,H,,N,O,需要C,69.0;H, 8.05y0), T (CDCl,)2.61, 2.68, 2.99 和 3.11 (4 x ArH), 5.97 (OMe), 6.02(2 x OMe), 以及 8.57 和 8.58 (2 x But).在回流丙酮中加入硫酸二甲酯和碳酸钾18 h,偶氮苯酚得到四甲氧基偶氮苯化合物(2)。2,5-0亚基乙氧基-4-叔丁基苯胺(1).-(a)与6-亚氨基-4-甲氧基-3-叔丁基环氧基环己-2,4-二烯-l-酮(9)缩合。将邻醌亚胺(9)[来自母体氨基苯酚(390mg)]与苯胺(1)(400mg)在蒸汽浴中的乙酸中加热3分钟。加水并用乙醚提取产品得到深红色残留物,从轻质石油中沉积红色针状(160毫克)。氯仿醚重结晶得到2-(2,5-二甲氧基-4-叔丁酰亚苯基)-4-(2,5-二甲氧基-Ct-丁基I-~薙基)-5-叔丁基环己-2,5-二烯-l-酮(lo),m.p.225-227“(发现:C,72.2;H,8.2;N,5.0。C,,H,,N,O,要求C,72.6;H,8.2;N,5.0%),vmX。3316m、1653s 和 1628s cm-l、T (CDC1、) 2.47br (NH)、3.10、3.20、3-52 和 3.71(4H)、3.36 (2H)、6-18、6.26、6.31 和 6.56 (4 x OMe),以及 8.49、8.60 和 8-68 (3 x But)。轻质石油母液的浓度得到不明的橙黄色晶体(54毫克),其分解为蓝色液体约230英寸。氧化铝上残留母液的色谱法和用轻质石油醚(1:0至4:1)洗脱得到通过制备t.1.c分离的材料。将硅胶在甲醇-苯(3:2)中分成两部分。这些沉积晶体中的第一个(8 mg)为3,8-二甲氧基-2,7-二叔丁基吩嗪(3),熔点和混合熔点204-205O(来自轻质石油)。第二部分给出了不明的淡黄色针头(20毫克),MP 181-182“。更多的极性溶剂洗脱少量苯胺基-醌亚胺(lo),然后洗脱深棕色胶(30 mg),在制备t.1.c后通过i.r.spectroscopy鉴定为氨基醌亚胺(4)。(b) 氨基醌亚胺 (4) 和苯胺基醌 itnine (10)。氨基醌亚胺(4)与苯胺(1)在乙酸中反应7小时,用水稀释,用乙醚萃取,得到苯胺基醌亚胺(10)。后者(10 mg)在6小时内用过量的苯胺(1)在乙酸中处理时,得到与苯胺(1)的氧化产物(5)相同的蓝色产物(3 mg)。(c) W-ith-2-氨基-5-叔丁基-1,4-苯醌。苯胺(1)(209mg)与该醌(179nig)在乙酸中在蒸汽浴中反应5小时,得到暗红色溶液。用水稀释并用乙醚萃取;将提取物蒸发,并将残留物在氧化铝上进行年代图。用轻质petroleuni-ether(1:0至4:1)洗脱,得到不变的醌(80mg)。与苯胺氧化得到的氨基醌亚胺(6)相同的氨基醌亚胺(6)的硫化材料(60mg)(1)。(d)用2,5-二甲氧基-1,4-苯醌,将苯胺(1)(627mg)和该醌(504mg)的乙酸(30ml)溶液在steani浴中加热30分钟。将紫色溶液倒入水中,滤去结晶沉淀,用沸腾的乙醚萃取,留下未变的醌残留物。将提取物蒸发,并将残余物从乙醚轻质石油中分次结晶,首先得到5-(或2)-甲氧基-2-(或5)-2,5-二甲氧基-4-叔丁基苯基)-4-(2,5-二甲氧基-4-叔丁基苯基亚氨基)环己-2,5-二烯-l-酮[(14)或(15)](200mg)作为紫色棱镜,M.P.212-214'(发现:C,68-9;H, 7.6;N,5.6。C,,H,,N,O,的计算量:C,69.4;H,7-5;N,5.2%),vrnZ 3307s,1649s和1629m cm-l,T(CDC1,)3-15,3-18,3.33,3.56,3-73和4-03(6H),6.04,6-20和6.53(3 x OMe),6-28(2 x OMe)以及8.62和8.69(2 xBut)。更可溶的组分是 5-(2,5-二甲氧基-4-叔丁基苯基)-2-苯乙氧基-l,4-苯醌 (13),获得紫色针状 (201 mg),熔点 149-150“(发现:C,66.3;H,6.9;N,4.4。C19H,,N05需要C,86.1;H, 6.7;N, 4.1y0), v,, 3320m, 1662s, and 1647sh cni-l, T (CDCl,)2.02 (NH), 3.08 and 3-10 (2 x ArH), 3.89 and 4-13 (2vinylic H), 6.13 (2 x OMe), 6-18 (OMe), and 8.61 (But).母液的T.1.c.显示存在未改变的苯胺(l),但不存在醌亚胺(7)。(e) 4-(2,5-二甲氧基-4-叔丁基~henyZin~i~zo)-2,5-二-11a乙氧基环己-2,5-二烯-l-酮(7)。在室温下将苯胺(1)(4mg)的乙酸(1-5ml)添加到乙酸(1.5ml)中的醌亚胺(7)(7mg)中得到深蓝色溶液。15分钟后,将其倒入水中。用乙醚萃取并蒸发提取物得到紫色残留物,该残留物从醚轻石油中重结晶,得到与(d)中获得的(14)或(15)相同的材料(7 mg)。(f) B-甲氧基-2-叔丁基-l,4-苯醌。将苯胺(1)和醌在乙酸中的等摩尔溶液混合并在蒸汽浴上加热15分钟。将冷却后的溶液倒入水中并用乙醚萃取。醚轻油提取物蒸发和残余物重结晶得到4-(2,5-二甲氧基-4-叔丁基苯亚氨基)-5-甲氧基-S-叔丁基环-六-2,5-二烯-l-酮(12)为深红棕色棱镜,熔点108-109-5°(发现:C,71.55;H, 7.8;N, 3.6.C,,H,,NO, 需要 C, 71.7;H,8.1;N,3.6y0),vmX1635s cm-l,A,,(环己烷)218,294和510nm(log E4.04,4.22和3*43),T(CDCl,)3.14,3.47和3.62(3H),4-30(乙烯基H),6.20,6-22和6.30(3 x OllIe),以及8.62和8.82(2 x But)。8-甲氧基-2,7-二叔丁基-3H-吩恶嗪-3-酮的反应(8) .-(a) 还原乙酰化.用锌粉和乙酸钠在温和回流的乙酸酐中,苯沙宗(8)在10分钟后得到S-乙酰氧基-lO-乙酰Z-8-甲氧基-2,7-二叔丁基苯氧噁嗪,针头,软化t 94-100“至粘稠液体(发现:C,70.9;H,7-5;N,3-1。C,,H,,NO,要求C,70-6;H,7.3;N,3.3%),vrnax。1766s 和 1691scm-l,T (CC1,) 2-62、2.99、3.04 和 3.25 (4 x ArH)、6.17(OMe)、7.67 (2 x COiLle) 和 8.65 (2 x But)。(b) 甲基化。将苯沙酮(8)(66mg)在含有甲醇钾(90mg)的干燥甲醇(14ml)中温和回流加热4小时。将所得的深蓝色混合物冷却至O“,然后加入碳酸钾(3 g),然后滴加硫酸二甲酯,直到二氧化碳的析出停止。然后加入更多量(70mg)的硫酸二甲酯,并将混合物在回流下加热5小时,过滤后,溶液在减压下蒸发至干,留下棕色胶质。将其应用于氧化铝并用轻质石油醚(7:3)洗脱,得到约3mg棕紫色胶。这不能在不产生相当大的损失的情况下进行纯化,但 RF 值 (t.1.c.) 与醌亚胺的 RF 值 (12) 相同。我们感谢通用汽车公司(General Motor's-Holden Pty. Ltd.)的研究员(R.K.H.)和澳大利亚研究资助委员会(Australian Research GrantsCommittee)的财政援助。[1/1499 收稿日期:1971年8月18日

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号