首页> 外文期刊>Meccanica: Journal of the Italian Association of Theoretical and Applied Mechanics >Analysis of impact loads in a magnetorheological energy absorber using a Bingham plastic model with refined minor loss factors accounting for turbulent transition
【24h】

Analysis of impact loads in a magnetorheological energy absorber using a Bingham plastic model with refined minor loss factors accounting for turbulent transition

机译:使用宾汉塑性模型分析磁流变能量吸收器中的冲击载荷,该模型具有精细的微小损失因子,说明了湍流过渡

获取原文
获取原文并翻译 | 示例
       

摘要

This study presents the improvement of a Bingham-plastic damper model incorporated with refined minor losses (BPM damper model) by considering fluid friction models so as to predict the stroking load of a magnetorheological energy absorber (MREA) during high speed impact. MREAs produce a variable stroking load that adapts to a range of payload mass and/or impact velocity by applying a magnetic field. When used for impact protection, design goals are: (1) to provide optimal stroking load over a wide range of impact velocities without exceeding the maximum allowable force, and (2) maintain a high dynamic range, defined as the ratio of maximum field-on force to field-off force, at high impact speeds. Thus, it is critical to accurately predict the field-off damper force at high piston velocity. In order to more accurately capture the exponential increase in damper stroking load with piston velocity, various velocity squared dependent minor losses were added to the model. The increased roughness of the walls inside the fluid flow orifice produced by the electromagnetic coils was taken into consideration, and the combination of smooth and rough walls was adopted. A piecewise formula for predicting Darcy friction factor for fluid flowing through a rough pipe in the laminar, transition, and fully turbulent regimes was implemented. An MREA was fabricated and drop tested to obtain stroking load data in the field-off and field-on states. The refined damper model was shown to more accurately predict damper force in both the low and high speed ranges than previously tested BPM damper models.
机译:本研究通过考虑流体摩擦模型,提出了结合细微损失的Bingham-plastic阻尼器模型(BPM阻尼器模型)的改进,从而预测了高速冲击过程中磁流变能量吸收器(MREA)的行程载荷。 MREA通过施加磁场产生可变的行程负载,以适应一定范围的有效负载质量和/或撞击速度。当用于冲击保护时,设计目标是:(1)在不超过最大允许力的情况下,在较大的冲击速度范围内提供最佳的行程载荷;(2)保持较高的动态范围,即最大磁场的比率-从高到高的冲击速度从力到场力。因此,至关重要的是准确预测高活塞速度下的场偏阻尼力。为了更准确地捕获随活塞速度而变化的阻尼器行程载荷,模型中增加了各种速度平方相关的较小损失。考虑到由电磁线圈产生的流体流孔内壁的增加的粗糙度,并且采用光滑壁和粗糙壁的组合。实施了分段公式,用于预测在层流,过渡和完全湍流状态下流经粗糙管的流体的达西摩擦系数。制造了MREA并进行了跌落测试,以获取处于场关和场通状态的行程负载数据。与以前测试的BPM阻尼器模型相比,改进的阻尼器模型显示出在低速和高速范围内都能更准确地预测阻尼器力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号