首页> 外文期刊>Biochemistry >REVERSIBLE BINDING OF NITRIC OXIDE TO TYROSYL RADICALS IN PHOTOSYSTEM II - NITRIC OXIDE QUENCHES FORMATION OF THE S3 EPR SIGNAL SPECIES IN ACETATE-INHIBITED PHOTOSYSTEM II
【24h】

REVERSIBLE BINDING OF NITRIC OXIDE TO TYROSYL RADICALS IN PHOTOSYSTEM II - NITRIC OXIDE QUENCHES FORMATION OF THE S3 EPR SIGNAL SPECIES IN ACETATE-INHIBITED PHOTOSYSTEM II

机译:光电系统中一氧化氮与酪氨酸自由基的可逆结合-乙酸盐抑制的光电系统中S3 EPR信号物种的一氧化氮猝灭形成

获取原文
获取原文并翻译 | 示例
           

摘要

Continuous illumination at temperatures above 350 K of photosystem II samples which have been depleted of calcium or chloride or treated with fluoride, acetate. or ammonia results in production of a broad radical EPR signal centered at g = 2.0. This EPR signal, called the S3 EPR signal, has been attributed to an organic radical interacting with the St state of the oxygen-evolving complex to give the species S(2)X(+) (X(+) = organic radical), A tyrosine radical has been proposed as the species responsible for the S3 EPR signal, On the basis of experiments demonstrating that nitric oxide binds reversibly to the tyrosyl radical in ribonucleotide reductase, nitric oxide has been used to probe the S3 EPR signal in acetate-treated photosystem II, In experiments using manganese-depleted photosystem II, nitric oxide was found to bind reversibly to both redox-active tyrosines, Y-D(.) and Y-Z(.), to form EPR-silent adducts, Next, acetate-treated photosystem II was illuminated to form the S3 EPR signal in the presence of nitric oxide to test whether the S3 EPR signal behaves like Y-Z(.). Under conditions that produce the maximum yield of the S3 EPR signal in acetate-treated photosystem II no S3 EPR signal was observed in the presence of nitric oxide. Upon removal of nitric oxide, the S3 EPR signal could be induced. Quenching of the S3 EPR signal by nitric oxide yielded an S-2-state multiline EPR signal, Its amplitude was 45% of that found for uninhibited photosystem II illuminated at 200 K: this yield is the same as the yield of the S3 EPR signal under equivalent conditions but without nitric oxide, These results suggest that the S3 EPR signal is due to the configuration S2YZ. in which the S-2 state of the oxygen-evolving complex gives a broadened multiline EPR signal as a result oi exchange and dipolar interactions with Y-Z(.). The binding of nitric oxide to Y-Z(.) to form a diamagnetic Y-Z-NO species uncouples the S-2 state from Y-Z(.), yielding a noninteracting S-2-state multiline EPR signal species.
机译:在350 K以上的温度下,对光系统II样品进行了连续照明,这些样品中的钙或氯化物已经耗尽,或用氟化物,乙酸盐处理过。或氨导致产生一个以g = 2.0为中心的宽泛的自由基EPR信号。该EPR信号称为S3 EPR信号,已归因于有机自由基与放氧络合物的St状态相互作用,从而产生S(2)X(+)(X(+)=有机自由基),已提出酪氨酸自由基作为负责S3 EPR信号的物质。基于实验证明一氧化氮可逆地结合到核糖核苷酸还原酶中的酪氨酸自由基上,一氧化氮已用于探测乙酸盐处理的S3 EPR信号光系统II,在使用贫锰光系统II的实验中,发现一氧化氮可逆地结合到氧化还原活性酪氨酸YD(。)和YZ(。)上,形成EPR沉默的加合物,其次,用乙酸处理的光系统II在存在一氧化氮的情况下,将其照射以形成S3 EPR信号,以测试S3 EPR信号的行为是否类似于YZ(。)。在乙酸盐处理的光系统II中产生S3 EPR信号最大产量的条件下,在一氧化氮的存在下未观察到S3 EPR信号。去除一氧化氮后,可以诱导S3 EPR信号。一氧化氮对S3 EPR信号的猝灭产生了S-2状态多线EPR信号,其幅度是在200 K照度下不受抑制的光系统II的幅度的45%:此产量与S3 EPR信号的产量相同在等效条件下但没有一氧化氮的情况下,这些结果表明S3 EPR信号归因于配置S2YZ。其中,随着与Y-Z(。)的交换和偶极相互作用,析出氧的配合物的S-2状态给出了加宽的多线EPR信号。一氧化氮与Y-Z(。)的结合形成抗磁性Y-Z-NO物质,使S-2状态与Y-Z(。)脱钩,从而产生非相互作用的S-2-状态多线EPR信号物质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号