首页> 外文期刊>Materials Science and Technology: MST: A publication of the Institute of Metals >Molecular level investigation into selective permeability of silicon based membranes with potential use in gas separation processes
【24h】

Molecular level investigation into selective permeability of silicon based membranes with potential use in gas separation processes

机译:硅基膜选择性渗透性的分子水平研究及其在气体分离过程中的潜在用途

获取原文
获取原文并翻译 | 示例
           

摘要

The effect of the modification of the molecular structure on the permeability coefficients of typical rubbery and glassy silane and siloxane polymers at different temperatures was experimentally investigated. It was shown that carbon dioxide had higher permeability coefficients than those of nitrogen and oxygen due to the higher affinity of the various polymers toward the gas molecules. In order to provide a detailed understanding into the effect of the molecular structure on the gas diffusion behaviour in polymers, molecular modelling of carbon dioxide diffusion in silicon based membranes was used. The polymer molecules were shown to have lower self-diffusion coefficients than the gas ones related to the small size of the gas molecules as compared to the large size of the polymeric segments, thus allowing the gas molecules to jump from one unoccupied site to another through a series of connected pores or channels within the polymeric matrix. Increasing the temperature was shown to have a proportional effect on the mean square displacement, possibly due to the increase in the kinetic energy available to the systems. At high temperatures, the glassy siloxane molecules had similar values for the mean square displacement to those of the gas molecules since the polymer in this case is in close proximity to its glass transition temperature. The presence of the alternating oxygen atoms in the main backbone of the polymeric chains led to higher values for the self-diffusion coefficients for the siloxane polymers as compared to those of the silane polymers as a result of the change in the bond angle about the oxygen atom (~144°) as compared to the tetrahedral angle (~110°) about the silicon atoms.
机译:实验研究了在不同温度下,分子结构的改性对典型的橡胶状和玻璃状硅烷和硅氧烷聚合物的渗透系数的影响。已经表明,由于各种聚合物对气体分子的更高的亲和力,二氧化碳具有比氮和氧更高的渗透系数。为了提供对分子结构对聚合物中气体扩散行为的影响的详细理解,使用了二氧化碳在硅基膜中扩散的分子模型。与聚合物链段的大尺寸相比,聚合物分子的自扩散系数比气体小,这与气体分子的小尺寸有关,从而使气体分子可以从一个未占用的位置跃迁到另一位置。聚合物基体内的一系列连通孔或通道。结果表明,温度升高对均方位移具有成比例的影响,这可能是由于系统可用的动能增加所致。在高温下,玻璃状硅氧烷分子的均方位移值与气体分子的均方值相似,因为在这种情况下,聚合物非常接近其玻璃化转变温度。与硅烷聚合物相比,在聚合物链主骨架中交替存在的氧原子导致硅氧烷聚合物的自扩散系数值更高,这是因为围绕氧的键角发生了变化原子(〜144°)与围绕硅原子的四面角(〜110°)相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号