...
首页> 外文期刊>Materials Characterization >Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite
【24h】

Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite

机译:强化铣削通过部分还原钡铁氧体在钡铁氧体/磁铁矿/铁杂化磁性纳米复合材料加工中的作用

获取原文
获取原文并翻译 | 示例

摘要

In this research a mixture of barium ferrite and graphite was milled for different periods of time and then heat treated at different temperatures. The effects of milling time and heat treatment temperature on the phase composition, thermal behavior, morphology and magnetic properties of the samples have been investigated using X-ray diffraction, differential thermal analysis, high resolution transmission electron microscopy and vibrating sample magnetometer techniques, respectively. X-ray diffraction results revealed that BaFe12O19/Fe3O4 nanocomposites form after a 20 h milling due to the partial reduction of BaFe12O19. High resolution transmission electron microscope images of a 40 h milled sample showed agglomerated structure consisting of nanoparticles with a mean particle size of 30 nm. Thermal analysis of the samples via differential thermal analysis indicated that for un-milled samples, heat treatment up to 900 degrees C did not result in alpha-Fe formation, while for a 20 h milled sample heat treatment at 700 degrees C resulted in reduction process progress to the formation of alpha-Fe. Wustite was disappeared in an X-ray diffraction pattern of a heat treated sample at 850 degrees C, by increasing the milling time from 20 to 40 h. By increasing the milling time, the structure of heat treated samples becomes magnetically softer due to an increase in saturation magnetization and a decrease in coercivity. Saturation magnetization and coercivity of a sample milled for 20 h and heat treated at 850 degrees C were 126.3 emu/g and 149.5 Oe which by increasing the milling time to 40 h, alter to 169.1 emu/g and 24.3 Oe, respectively. High coercivity values of milled and heat treated samples were attributed to the nano-scale formed iron particles. (C) 2015 Elsevier Inc. All rights reserved.
机译:在这项研究中,将钡铁氧体和石墨的混合物研磨不同的时间,然后在不同的温度下进行热处理。分别使用X射线衍射,差热分析,高分辨率透射电子显微镜和振动样品磁强计技术研究了研磨时间和热处理温度对样品的相组成,热行为,形貌和磁性的影响。 X射线衍射结果表明,由于BaFe12O19的部分还原,BaFe12O19 / Fe3O4纳米复合材料在研磨20小时后形成。研磨了40 h的样品的高分辨率透射电子显微镜图像显示了由平均粒径为30 nm的纳米颗粒组成的团聚结构。通过差示热分析对样品进行热分析表明,对于未研磨的样品,高达900摄氏度的热处理不会导致形成α-Fe,而对于700摄氏度的研磨20小时的热处理,则导致还原过程逐渐形成α-Fe。通过将铣削时间从20 h增加到40 h,在经过热处理的样品的X射线衍射图中,钙铁矿消失了。通过增加研磨时间,由于饱和磁化强度的增加和矫顽力的降低,热处理样品的结构在磁性上变得更软。研磨20小时并在850摄氏度下热处理的样品的饱和磁化强度和矫顽力分别为126.3 emu / g和149.5 Oe,这通过将研磨时间延长至40 h分别变为169.1 emu / g和24.3 Oe。研磨和热处理样品的高矫顽力值归因于纳米级形成的铁颗粒。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号