...
首页> 外文期刊>Materials transactions >Hydrogen Internal Friction Peak in Amorphous Zr-Cu-Al-Si Alloys
【24h】

Hydrogen Internal Friction Peak in Amorphous Zr-Cu-Al-Si Alloys

机译:非晶Zr-Cu-Al-Si合金中的氢内摩擦峰

获取原文
获取原文并翻译 | 示例

摘要

The hydrogen internal friction peak (HIFP) in amorphous (a-) Zr_(60)Cu_(40-y)Al_y (y=0, 10), a-Zr_(50)Cu_(50), a-Zr_(40)Cu_(60) and a-Zr_(40)Cu_(50-x)Al_(10)Si_x (x=0, 1, 3) are studied to pursue a high-strength and high-damping performance as well as the underlying process for the HIFP in a-alloys. The tensile strength, sigma_f, of a-Zr_(60)Cu_(30)Al_(10), a-Zr_(40)Cu_(50)Al_(10) and a-Zr_(40)Cu_(49)Al_(10)Si_1 increases from about 1.5 GPa to 2 GPa with increasing hydrogen concentration, C_H, to 20 at percent. One part of a-Zr_(60)Cu_(30)Al_(10), a-Zr_(40)Cu_(50)Al_(10) and a-Zr_(40)Cu_(49)Al_(10)Si_1 specimens show a very high HIFP beyond 3 X 10~(-2) in the as hydrogen charged state, where the hydrogen induced structural relaxation (HISR) proceeds above room temperature. A maximum value of the HIFP, Q_p~(-1) after the HISR shows a moderate increase with increasing C_H, about 1 X 10~(-2) at CR of 10 at percent. The combination of sigma_f and Q_p~(-1) data indicates that a-Zr_(60)Cu_(40)Al_(10)(H), a-Zr_(40)Cu_(50)Al_(10)(H) and a-Zr_(40)Cu_(49)Al_(10)Si_1(H) after the HISR are potential materials with a high-strength and high-damping performance. The peak temperature of the HIFP T_p, at 10 at percent H is 309 K, 270K and 220K with the measurement frequency of about 200Hz for a-Zr_(40)Cu_(49)Al_(10)Si_1, a-Zr_(40)Cu_(50)Al_(10) and a-Zr_(60)Cu_(30)Al_(10), respectively. It is noted that T_p found for a-Zr_(40)Cu_(49)Al_(10)Si_1 shows a breakthrough for an elevation of T_p of the HIFP in a-alloys, and that a composite material composed of these a-alloys can serve a high-damping performance in a wide temperature range or a wide frequency range. For the underlying process of the HIFP the Q_p~(-1) vs. CR data shows a camel's humps like change for a-Zr_(50)Cu_(50) and a-Zr_(40)Cu_(60), suggesting that only one part of hydrogen atoms can contribute to the HIFP. In contrast, Q_p~(-1) shows a monotonous increase with increasing C_H for C_H below 20 at percent for a-Zr_(60)Co_(40-y)Al_y (y = 0, 10) and a-Zr_(40)Cu_(50-x)Al_(10)Si_x (x = 0, 1, 3), suggesting that most of hydrogen atoms are associated with the HIFP in the a-alloys. For the relaxation parameters of the HIFP, values of 1/tau_0 fall in the range expected for a simple relaxation process for a-Zr_(60)Cu_(40-y)Al_y (y = 0,10) and a-Zr_(40)Cu_(50-x)Al_(10)Si_x (x = 0, 1, 3), but are extremely high for a-Zr_(50)Cu_(50) and a-Zr_(40)Cu_(60), where tau_0 denotes the pre-exponential factor of the relaxation time. These results are discussed in the light of the amorphous structures in the a-alloys.
机译:非晶态(a-)Zr_(60)Cu_(40-y)Al_y(y = 0,10),a-Zr_(50)Cu_(50),a-Zr_(40)中的氢内摩擦峰(HIFP)研究Cu_(60)和a-Zr_(40)Cu_(50-x)Al_(10)Si_x(x = 0,1,3)以追求高强度和高阻尼性能以及基础工艺用于a合金的HIFP。 a-Zr_(60)Cu_(30)Al_(10),a-Zr_(40)Cu_(50)Al_(10)和a-Zr_(40)Cu_(49)Al_(10)的抗拉强度sigma_f随着氢浓度C_H的增加,Si_1从约1.5 GPa增加到2 GPa,达到20 at%。显示a-Zr_(60)Cu_(30)Al_(10),a-Zr_(40)Cu_(50)Al_(10)和a-Zr_(40)Cu_(49)Al_(10)Si_1的一部分在氢充注状态下,超高HIFP超过3 X 10〜(-2),其中氢诱导的结构弛豫(HISR)在室温以上进行。 HISR之后的HIFP最大值Q_p〜(-1)随C_H的增加而出现适度增加,CR为10 at%时约为1 X 10〜(-2)。 sigma_f和Q_p〜(-1)数据的组合表示a-Zr_(60)Cu_(40)Al_(10)(H),a-Zr_(40)Cu_(50)Al_(10)(H)和HISR之后的a-Zr_(40)Cu_(49)Al_(10)Si_1(H)是具有高强度和高阻尼性能的潜在材料。 HIFP T_p的峰值温度为10 at H时的峰值温度为309 K,270K和220K,其中a-Zr_(40)Cu_(49)Al_(10)Si_1,a-Zr_(40)的测量频率约为200Hz Cu_(50)Al_(10)和a-Zr_(60)Cu_(30)Al_(10)分别。值得注意的是,a-Zr_(40)Cu_(49)Al_(10)Si_1的T_p显示了a合金中HIFP T_p升高的突破,并且由这些a-合金组成的复合材料可以在宽温度范围或宽频率范围内具有高阻尼性能。对于HIFP的基本过程,Q_p〜(-1)与CR数据显示了骆驼的驼峰,例如a-Zr_(50)Cu_(50)和a-Zr_(40)Cu_(60)的变化,这表明氢原子的一部分可以促进HIFP。相反,对于a-Zr_(60)Co_(40-y)Al_y(y = 0,10)和a-Zr_(40),Q_p〜(-1)在C_H低于20 at%时显示C_H随C_H增加而单调增加。 Cu_(50-x)Al_(10)Si_x(x = 0,1,3),表明大多数氢原子与α-合金中的HIFP相关。对于HIFP的弛豫参数,1 / tau_0的值落在a-Zr_(60)Cu_(40-y)Al_y(y = 0,10)和a-Zr_(40 )Cu_(50-x)Al_(10)Si_x(x = 0,1,3),但对于a-Zr_(50)Cu_(50)和a-Zr_(40)Cu_(60)来说极高tau_0表示弛豫时间的指数前因子。根据a合金中的非晶结构讨论了这些结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号