...
首页> 外文期刊>SAE International Journal of Engines >Development of a High Turbulence, Low Particle Number, High Injection Pressure Gasoline Direct Injection Combustion System
【24h】

Development of a High Turbulence, Low Particle Number, High Injection Pressure Gasoline Direct Injection Combustion System

机译:

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the present work the benefit of a 50 MPa gasoline direct injection system (GDI) in terms of particle number (PN) emissions as well as fuel consumption is shown on a 0.5 l single cylinder research engine in different engine operating conditions. The investigations show a strong effect of injection timing on combustion duration. As fast combustion can be helpful to reduce fuel consumption, this effect should be investigated more in detail. Subsequent analysis with the method of particle image velocimetry (PIV) at the optical configuration of this engine and three dimensional (3D) computational fluid dynamics (CFD) calculations reveal the influence of injection timing on large scale charge motion (tumble) and the level of turbulent kinetic energy. Especially with delayed injection timing, high combustion velocities can be achieved. At current series injection pressures, the particle number emissions increase at late injection timing. With up to 50 MPa it is possible to overcome this trade off. Higher injection pressures allow faster combustion by delaying injection timing without rising particle number emissions. Especially at high engine loads the enhanced combustion speed enables an extension of knock limit and the use of optimized spark timing. This results in higher thermal efficiency and reduced fuel consumption.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号