...
首页> 外文期刊>Biochemistry >Size Variability of the Unit Building Block of Peripheral Light-Harvesting Antennas as a Strategy for Effective Functioning of Antennas of Variable Size that Is Controlled in vivo by Light Intensity
【24h】

Size Variability of the Unit Building Block of Peripheral Light-Harvesting Antennas as a Strategy for Effective Functioning of Antennas of Variable Size that Is Controlled in vivo by Light Intensity

机译:外围光收集天线的单位构件的尺寸可变性,以作为受光强度在体内控制的可变尺寸天线的有效功能的策略

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell culture growth.
机译:这项工作连续进行了一系列研究,致力于发现光合微生物体内天然触角的组织原理,这些原理在体内产生了大型而高效的光收集结构。在绿色光合作用细菌中观察到最大的天线,该细菌能够在较大的光强度范围内生长,并通过增加外围BChl c / d / e天线的尺寸来适应低强度。但是,天线尺寸的增加必然会导致结构变化,以保持其高效率运行。我们的模型计算表明,集光天线色素的聚集代表了优化任何天线功能并管理天线效率的通用结构因素之一。如果天线颜料的聚集度是一个可变参数,则天线的效率会随天线单个聚集体尺寸的增加而增加。这意味着受光收集天线尺寸控制的颜料聚集度的改变在生物学上是有利的。我们在先前对绿藻科绿色细菌的低聚氯体BChl c超级天线的工作中表明,这种可变天线结构优化的原理实际上是在体内实现的,该结构的大小受细菌生长过程中的光强度控制。该现象的研究在当前工作中继续进行,扩大了研究的生物材料的数量,并研究了具有不同结构的脂质体的光学线性和非线性光谱。对于绿色细菌(来自两个不同家族,绿屈菜科和颤藻科)的低聚氯体超天线,我们证明了单个BChl c聚集体的大小很小,并且BChl c聚集的程度是一个可变参数,它受细菌大小的控制。整个BChl c超级天线,而后者则在细胞培养生长过程中受光强度控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号