首页> 外文期刊>Materials and Corrosion >A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction
【24h】

A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction

机译:基于流体结构相互作用确定流动加速腐蚀速率的新方法

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the mechanism of flow-accelerated corrosion (FAC) and FAC rate prediction model are investigated. A modified MIT model is obtained by illustrating the relationship between CPF thickness and porosity with CPF stress based on fluid structure interaction (FSI) numerical simulation. The results reveal that the effect of fluid on CPF strength gradually increased with increasing of velocity, thereby increasing Tresca stress and deformation. CPF thickness gradually decreased with increasing stress and decreasing pH. CPF porosity gradually increased with increasing Tresca stress; however, porosity change became smaller when stress reached a certain value. CPF porosity is gradually reduced with increasing temperature. Finally, FAC rate is proportional to Tresca stress and temperature and is inversely proportional to pH. The calculation results of the modified MIT model agree with the experimental results.
机译:本文研究了流动加速腐蚀(FAC)的机理和FAC速率预测模型。通过基于流体结构相互作用(FSI)数值模拟说明CPF厚度和孔隙率与CPF应力之间的关系,获得了改进的MIT模型。结果表明,流体对CPF强度的影响随着速度的增加而逐渐增加,从而增加了Tresca应力和变形。 CPF厚度随着应力的增加和pH值的降低而逐渐减小。 CPF孔隙度随着Tresca应力的增加而逐渐增加;但是,当应力达到一定值时,孔隙率变化变小。 CPF孔隙度随温度升高而逐渐降低。最后,FAC速率与Tresca应力和温度成正比,与pH成反比。改进后的MIT模型的计算结果与实验结果吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号