...
首页> 外文期刊>SAE International Journal of Engines >Combustion and Autoignition Modelling in a Turbocharged SI Engine
【24h】

Combustion and Autoignition Modelling in a Turbocharged SI Engine

机译:

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A holistic modelling approach has been employed to predict combustion, cyclic variability and knock propensity of a turbocharged downsized SI engine fuelled with gasoline. A quasi-dimensional, thermodynamic combustion modelling approach has been coupled with chemical kinetics modelling of autoignition using reduced mechanisms for realistic gasoline surrogates. The quasi-dimensional approach allows a fast and appreciably accurate prediction of the effects of operating conditions on the burn-rate and makes it possible to evaluate engine performance. It has also provided an insight into the nature of the turbulent flame as the boost pressure and speed is varied. In order to assess the sensitivity of the end-gas chemical kinetics to cyclic variability, the in-cylinder turbulence and charge composition were perturbed according to a Gaussian distribution. Coupling cyclic variability with autoignition modelling allowed prediction of the autoignition propensity for the entire spectrum of cyclic variations in cylinder pressure. The models have been validated against engine test data from a technology demonstrator downsized, turbocharged engine. The knock-limited spark advance was predicted for a RON 95 and RON 102 gasoline within 2° of crank angle. This work demonstrates the viability of chemical kinetics for gasoline surrogates coupled with 0-dimensional thermodynamic modelling approach as a fast and reliable development tool for high performance engines.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号