...
首页> 外文期刊>Fundamental & clinical pharmacology. >In vivo measurement of QT prolongation, dispersion and arrhythmogenesis: application to the preclinical cardiovascular safety pharmacology of a new chemical entity.
【24h】

In vivo measurement of QT prolongation, dispersion and arrhythmogenesis: application to the preclinical cardiovascular safety pharmacology of a new chemical entity.

机译:QT延长,分散和心律失常的体内测量:在新化学实体的临床前心血管安全药理学中的应用。

获取原文
获取原文并翻译 | 示例
           

摘要

In addition to in silico and in vitro measurements, cardiac electrophysiology in experimental animals plays a decisive role in the selection of a potential 'cardio-safe' new chemical entity (NCE). The present synopsis critically reviews such in vivo techniques in experimental animals. In anaesthetized guinea-pigs, surface ECG recordings readily identify the typical effects of Class I to IV anti-arrhythmic compounds and of If blockers such as zatebradine on ECG intervals and morphology, but also of non-cardiovascular NCEs affecting cardiac electrical activity via ion channels or neurogenic mechanisms. QT/RR plots indicate that bradycardia is a dominant effect of IKr blockers (dual modulation by IKr of sinus node activity and ventricular repolarization). Nevertheless, correction of QT with Bazett's formula usually distinguishes between drug-induced heart rate reduction and real prolongation of ventricular repolarization (QTc).The anaesthetized guinea-pig model thus is a useful tool for first line in vivotesting of an NCE for effects on cardiac electrophysiology, in particular when combined with measurements of drug levels in plasma and heart tissues. In anaesthetized dogs, advanced ECG analyses identify drug-induced effects on atrial and ventricular intervals, on temporal and transmural dispersion of ventricular repolarization and on incidences of early after-depolarizations. This can be combined with complete haemodynamic, pulmonary and pharmacokinetic analyses in one preparation. However, compound doses/plasma levels needed for effects on ventricular repolarization in this model are substantially higher than those identified in guinea-pigs, at least for IKr blocking compounds. Therefore, we use this 'information-rich' canine model as a second line approach. In awake, trained and appropriately instrumented dogs, readings of surface ECG in combination with cardio-haemodynamic and behavioural assessments can be performed after the administration of an NCE via the expected therapeutic route, including oral medication. However, at higher doses the compound under scrutiny may induce overall behavioural side-effects, related to its primary pharmacological action, such as gastrokinetic repercussions or CNS-mediated sedation or excitation. Such primary pharmacological effects are bound to compromise the evaluation of real drug-induced changes on cardiac electrophysiology, readily identified by resource-friendly setups in smaller animals. Therefore, we use such paradigms as an imperative, final cardiovascular check-up, before a 'First in Man' administration of the NCE. In anaesthetized, methoxamine-challenged rabbits, arrhythmogenic effects of IKr blockers (torsades de pointes) and of dual channel INa/IKr blockers (conduction disturbances) are readily identified. Drug-induced QT dispersion rather than a 'simple' QTc prolongation determines the ventricular arrhythmogenic effect of IKr blockers. The latter effect also depends on the rate of drug delivery (plasma levels vs. heart level, equilibrium throughout the myocardium). Therefore, we use models sensitized for arrhythmogenesis to document further the profile of a comparatively 'cardio-safe' NCE. We conclude that the interpretation of an integrated profile of activity of an NCE on in vitro and in vivo cardiovascular parameters, in comparison with the characteristics of its primary pharmacology and target disease, determines its eventual selection via a scientific, rather than a 'checklist' or 'menu' approach to cardiovascular safety pharmacology. Appropriate tests in experimental animals play a key role in this process.
机译:除了计算机和体外测量外,实验动物的心脏电生理学在选择潜在的“对心脏安全”的新化学实体(NCE)中起决定性作用。本概要对实验动物中的这种体内技术进行了严格的综述。在麻醉的豚鼠中,表面心电图记录可以轻松识别出I至IV类抗心律不齐化合物以及If阻滞剂(如zatebradine)对ECG间隔和形态的典型影响,以及非心血管NCE通过离子通道影响心脏电活动的典型作用。或神经源性机制。 QT / RR图表明心动过缓是IKr阻滞剂的主要作用(窦房结活动和心室复极化的IKr双重调节)。尽管如此,用Bazett公式校正QT通常可以区分药物引起的心率降低和心室复极(QTc)的实际延长。麻醉的豚鼠模型因此是一线用于NCE体内测试对心脏的影响的有用工具电生理,特别是与血浆和心脏组织中药物水平的测量结合使用时。在麻醉的狗中,先进的心电图分析可以确定药物对心房和心室间隔,对心室复极的时间和透壁分散以及对早期除极后发生率的影响。可以在一种制剂中将其与完整的血液动力学,肺部和药代动力学分析相结合。但是,此模型中影响心室复极所需的化合物剂量/血浆水平显着高于豚鼠中确定的化合物剂量/血浆水平,至少对于IKr阻断化合物而言。因此,我们使用这种“信息丰富”的犬模型作为第二线方法。在清醒,训练有素且配备适当仪器的狗中,可以在通过预期的治疗途径(包括口服药物)施用NCE后,结合心脏血流动力学和行为评估来读取表面心电图。但是,在较高剂量下,经过仔细检查的化合物可能会诱导与其主要药理作用有关的总体行为副作用,例如胃肠动力反应或CNS介导的镇静作用或兴奋作用。这种主要的药理作用势必会损害对药物实际引起的心脏电生理变化的评估,这在较小的动物中通过资源友好的设置很容易确定。因此,在对NCE进行“人为第一”给药之前,我们将此类范例用作必要的最终心血管检查。在麻醉的,对甲氧嘧啶攻击的兔子中,很容易确定IKr阻滞剂(扭转性扭转型)和双通道INa / IKr阻滞剂(传导障碍)的致心律失常作用。药物诱导的QT分散而不是“简单”的QTc延长决定了IKr阻滞剂的心律失常作用。后一种效应还取决于药物输送的速率(血浆水平与心脏水平,整个心肌的平衡)。因此,我们使用对心律失常敏感的模型来进一步记录相对“心脏安全”的NCE的概况。我们得出的结论是,与NCE的主要药理学和靶标疾病的特征相比,对NCE在体外和体内心血管参数上的综合活性谱的解释决定了其最终选择的依据是科学方法,而不是“检查表”或“菜单”方法进行心血管安全药理学研究。在实验动物中进行适当的测试在此过程中起关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号