首页> 外文期刊>Materials express: an international journal on multidisciplinary materials research >A simple large-scale method for preparation of g-C3N4/SnO2 nanocomposite as visible-light-driven photocatalyst for degradation of an organic pollutant
【24h】

A simple large-scale method for preparation of g-C3N4/SnO2 nanocomposite as visible-light-driven photocatalyst for degradation of an organic pollutant

机译:一种简单的大规模制备g-C3N4 / SnO2纳米复合材料作为可见光驱动的光催化剂,用于降解有机污染物的方法

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, we report a simple large-scale method for preparation of g-C3N4/SnO2 nanocomposite as visible-light-driven photocatalyst. The nanocomposite was prepared by a facile refluxing method at 96 degrees C for one hour using g-C3N4, SnCl4, and NaOH as the starting materials. The prepared samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive analysis of X-rays, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, Fourier transform-infrared spectroscopy, and photoluminescence (PL) techniques. Photocatalytic activity of the samples was investigated by degradation of rhodamine B (RhB) under visible-light irradiation. The degradation rate constant of RhB on g-C3N4(90%)/SnO2 nanocomposite is about 2.1 and 9.3-fold higher than those of g-C3N4 and SnO2, respectively. Increase of the photocatalytic activity was related to the separation of electron hole pairs, confirmed by PL technique. Moreover, the degradation rate constant was initially increased with refluxing time up to one hour and then decreased. It was found that superoxide ions and holes are the main reactive species in the degradation reaction. This work can be applied for preparation of other visible-light-driven photocatalysts based on g-C3N4.
机译:在这项工作中,我们报告了一种简单的大规模制备g-C3N4 / SnO2纳米复合材料作为可见光驱动的光催化剂的方法。使用g-C3N4,SnCl4和NaOH作为起始原料,通过简便的回流方法在96摄氏度下制备纳米复合材料一小时。通过X射线衍射,透射电子显微镜,扫描电子显微镜,X射线能量色散分析,X射线光电子能谱,漫反射光谱,傅里叶变换红外光谱和光致发光(PL)技术对制备的样品进行表征。通过在可见光照射下若丹明B(RhB)的降解研究了样品的光催化活性。 RhB在g-C3N4(90%)/ SnO2纳米复合材料上的降解速率常数分别比g-C3N4和SnO2的降解速率常数高约2.1倍和9.3倍。 PL技术证实,光催化活性的提高与电子空穴对的分离有关。此外,降解速率常数最初随着回流时间增加至一小时而增加,然后降低。已经发现,超氧离子和空穴是降解反应中的主要反应物种。这项工作可用于制备其他基于g-C3N4的可见光驱动的光催化剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号