首页> 外文期刊>Marine Geology >Testing proposed mechanisms for seafloor weakening at the top of gas hydrate stability on an uplifted submarine ridge (Rock Garden), New Zealand
【24h】

Testing proposed mechanisms for seafloor weakening at the top of gas hydrate stability on an uplifted submarine ridge (Rock Garden), New Zealand

机译:在新西兰海底隆起的山脊(岩石花园)上测试提议的在天然气水合物稳定性顶部减弱海底的机制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We evaluate different hypotheses concerning the formation of a peculiar, flat-topped ridge at Rock Garden,offshore of the North Island of New Zealand. The coincidence of the ridge bathymetry with the depth atwhich gas hydrate stability intersects the seafloor has been previously used to propose that processes at the top of gas hydrate stability may cause seafloor erosion, giving rise to the flat ridge morphology. Two mechanisms that lead to increased fluid pressure (and sediment weakening) have previously been proposed:(1) periodic formation (association) and dissociation of gas hydrates during seafloor temperature Keywords:fluctuations; and (2) dissociation of gas hydrates at the base of gas hydrate stability during ridge uplift.We use numerical models to test these hypotheses, as well as to evaluate whether the ridge morphology can develop by tectonic deformation during subduction of a seamount, without any involvement from gas hydrates. We apply a commonly-used 1D approach to model gas hydrate formation and dissociation, anddevelop a 2D mechanical model to evaluate tectonic deformation. Our results indicate that: (1) Tectonics (subduction of a seamount) may cause a temporary flat ridge morphology to develop, but this evolves overtime and is unlikely to provide the main explanation for the ridge morphology; (2) Where high methane flux overwhelms the anaerobic oxidation of methane via sulphate reduction near the seafloor, short-period temperature fluctuations (but on timescales of years, not months as proposed originally) in the, bottom water can lead to periodic association and dissociation of a small percentage of gas hydrate in theftop of the sediment column. However, the effect of this on sediment strength is likely to be small, as evidenced by the negligible change in computed effective pressure; (3) The most likely mechanism to cause sediment weakening, leading to seafloor erosion, results from the interaction of gas hydrate stability with tectonic uplift of the ridge, provided bulk permeability strongly decreases with increasing hydrate content. Rather than overpressure developing from dissociation of hydrates at the base of gas hydrate stability (as previously thought), we found that the weakening is caused by focusing of gas hydrate formation at shallow sediment levels. This creates large fluid pressures and can lead to negative effective pressures near the seafloor, reducing the sediment strength.
机译:我们评估了关于在新西兰北岛近海的岩石花园形成奇特的平顶山脊的不同假设。脊水深法与天然气水合物稳定性与海底相交深度的重合以前已被用于提出,天然气水合物稳定性顶部的过程可能引起海底侵蚀,从而形成平坦的脊形态。先前已经提出了两种导致流体压力升高(和沉积物减弱)的机理:(1)海底温度期间天然气水合物的周期性形成(缔合)和解离。 (2)在隆起过程中以天然气水合物的稳定性为基础分解天然气水合物。我们使用数值模型来验证这些假设,并评估海岭俯冲过程中构造变形是否可以形成脊形态,而没有任何作用。气体水合物的参与。我们应用一种常用的一维方法来模拟天然气水合物的形成和分解,并开发一种二维力学模型来评估构造变形。我们的结果表明:(1)构造(海山俯冲)可能会导致暂时的平坦脊形发育,但是随着时间的推移会演化,因此不太可能提供有关脊形的主要解释; (2)如果高甲烷通量通过海床附近的硫酸盐还原而使甲烷的厌氧氧化反应不堪重负,那么底水中的短时温度波动(但以年为单位,而不是最初提出的几个月)会导致周期性的缔合和解离沉积物塔顶的少量天然气水合物。但是,这对沉积物强度的影响可能很小,这可以通过计算有效压力的微小变化来证明。 (3)假设水合物含量随水合物含量的增加而大大降低,则天然气水合物稳定性与山脊构造抬升之间的相互作用是造成沉积物减弱,导致海底侵蚀的最可能机制。我们发现,削弱不是由天然气水合物形成集中在浅层沉积物水平引起的,而不是由于天然气水合物稳定基础上的水合物分解而产生的超压。这会产生较大的流体压力,并可能导致海底附近的负有效压力,从而降低沉积物强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号