...
首页> 外文期刊>Marine Geology >High-resolution architecture of a polygonal fault interval inferred from geomodel applied to 3D seismic data from the Gjallar Ridge, Voring Basin, Offshore Norway
【24h】

High-resolution architecture of a polygonal fault interval inferred from geomodel applied to 3D seismic data from the Gjallar Ridge, Voring Basin, Offshore Norway

机译:从地理模型推断出的多边形断层间隔的高分辨率结构应用于挪威海上Voring盆地Gjallar山脊的3D地震数据

获取原文
获取原文并翻译 | 示例
           

摘要

3D seismic data located in the Gjallar Ridge (Voring Basin, offshore Norway) reveals a closely-spaced polygonal fault system affecting more than 800 m of homogeneous mud-dominated Quaternary and Tertiary sequences. As some faults reach the modern seafloor, they represent an active polygonal fault system at present day. Even if the processes remain unclear and are still under debate, it is generally agreed that the initiation of polygonal faults is the result of shallow burial dewatering of fine-grained unconsolidated sediments by volumetric compaction. 3D seismic data are commonly interpreted by propagating horizons automatically and by picking faults manually. However, in the case of polygonal fault intervals, this approach is time consuming due to the huge number of faults and because automatic propagation can be misleading. In this study, we applied a new technique of 3D seismic interpretation based on a sequential stratigraphy analysis, using the new PaleoScan? software (Eliis Company). It allowed us to build a 3D geological model computing more than 300 horizons within the faulted intervals. We then used the coherency attribute, depicting anomalies in the shape of seismic waveform like faults, in order to constrain a possible link between fault distribution and stratigraphic levels. Our approach allows fault throws to be calculated in milliseconds on any polygonal fault plane. The result shows that fault segments have been reactivated by dip-linkage. Distribution of faults depends on mechanical units, intervals characterized by different petrophysical properties, which are independent from lithological and diagenetic changes. According to these results, we propose a model showing the evolution of polygonal fault intervals in which faulting stages are separated by a quiescence phase during burial. A first tier of polygonal faults is initiated at a specific depth, according to the Cam-clay model. Then, following a period of quiescence during which mud-rich sediments continued to accumulate, new fault segments are initiated above the first mechanical unit and within this undeformed interval. New nucleated faults then connect downward to pre-existing underlying polygonal fault system, thus progressively increasing the thickness of the faulted interval.
机译:位于Gjallar Ridge(挪威近海的Voring盆地)的3D地震数据显示,一个紧密分布的多边形断层系统影响了800 m以上的均质泥浆为主的第四纪和第三纪层序。随着一些断层到达现代海底,它们代表了现今活跃的多边形断层系统。即使过程尚不清楚,仍在争论中,但普遍认为,多边形断层的形成是通过体积压实法对细粒未固结沉积物进行浅埋葬脱水的结果。 3D地震数据通常通过自动传播地层和手动拾取断层来解释。但是,在多边形故障间隔的情况下,由于大量的故障并且自动传播会产生误导,因此这种方法很耗时。在这项研究中,我们使用新的PaleoScan?技术,在基于顺序地层分析的基础上应用了3D地震解释的新技术。软件(Eliis公司)。它使我们能够建立3D地质模型,在断层间隔内计算300多个地平线。然后,我们使用相干属性,以断层等地震波形的形式描绘异常,以限制断层分布和地层之间的可能联系。我们的方法允许在任何多边形断层平面上以毫秒为单位计算断层率。结果表明,断层段已通过浸入链接重新激活。断层的分布取决于机械单元,其间隔具有不同的岩石物理特性,而与岩性和成岩作用无关。根据这些结果,我们提出了一个模型,该模型显示了多角形断层间隔的演化,其中在埋藏期间断层阶段被静止阶段隔开。根据凸轮粘土模型,第一层多边形断层是在特定深度处开始的。然后,经过一段静默期,在此期间,富泥沉积物继续堆积,新的断层段在第一个机械单元上方并在此未变形间隔内开始。然后,新的有核断层向下连接到预先存在的下伏多边形断层系统,从而逐渐增加断层间隔的厚度。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号