首页> 外文期刊>Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine >Phase-sensitive, dual-acquisition, single-slab, 3D, turbo-spin-echo pulse sequence for simultaneous T2-weighted and fluid-attenuated whole-brain imaging.
【24h】

Phase-sensitive, dual-acquisition, single-slab, 3D, turbo-spin-echo pulse sequence for simultaneous T2-weighted and fluid-attenuated whole-brain imaging.

机译:相敏,双采集,单板,3D,涡轮自旋回波脉冲序列,可同时进行T2加权和流体衰减全脑成像。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Conventional T(2)-weighted turbo/fast spin echo imaging is clinically accepted as the most sensitive method to detect brain lesions but generates a high signal intensity of cerebrospinal fluid (CSF), yielding diagnostic ambiguity for lesions close to CSF. Fluid-attenuated inversion recovery can be an alternative, selectively eliminating CSF signals. However, a long time of inversion, which is required for CSF suppression, increases imaging time substantially and thereby limits spatial resolution. The purpose of this work is to develop a phase-sensitive, dual-acquisition, single-slab, three-dimensional, turbo/fast spin echo imaging, simultaneously achieving both conventional T(2)-weighted and fluid-attenuated inversion recovery-like high-resolution whole-brain images in a single pulse sequence, without an apparent increase of imaging time. Dual acquisition in each time of repetition is performed, wherein an in phase between CSF and brain tissues is achieved in the first acquisition, while an opposed phase, which is established by a sequence of a long refocusing pulse train with variable flip angles, a composite flip-down restore pulse train, and a short time of delay, is attained in the second acquisition. A CSF-suppressed image is then reconstructed by weighted averaging the in- and opposed-phase images. Numerical simulations and in vivo experiments are performed, demonstrating that this single pulse sequence may replace both conventional T(2)-weighted imaging and fluid-attenuated inversion recovery.
机译:传统的T(2)加权涡轮/快速自旋回波成像在临床上被认为是检测脑部病变的最灵敏方法,但是会产生高信号强度的脑脊液(CSF),对接近CSF的病变产生诊断歧义。流体衰减反演恢复可以是一种替代方法,可以有选择地消除CSF信号。然而,CSF抑制所需的长时间反转会大大增加成像时间,从而限制了空间分辨率。这项工作的目的是开发一种相敏,双采集,单板,三维,涡轮/快速自旋回波成像,同时实现传统的T(2)加权和流体衰减的反转恢复样单个脉冲序列中的高分辨率全脑图像,而没有明显增加成像时间。在每次重复中都执行双重采集,其中在第一次采集中实现了CSF和脑组织之间的同相,而相反的相(通过一系列具有可变翻转角的长重新聚焦脉冲序列的序列建立)在第二次采集中获得了向下翻转的恢复脉冲序列和较短的延迟时间。然后,通过对同相和反相图像进行加权平均,重建CSF抑制的图像。进行了数值模拟和体内实验,表明该单脉冲序列可以代替传统的T(2)加权成像和流体衰减的反转恢复。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号