首页> 外文期刊>Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine >Improved motion correction capabilities for fast spin echo T 1 FLAIR propeller using non-Cartesian external calibration data driven parallel imaging
【24h】

Improved motion correction capabilities for fast spin echo T 1 FLAIR propeller using non-Cartesian external calibration data driven parallel imaging

机译:使用非笛卡尔外部校准数据驱动的并行成像,改进了快速自旋回波T 1 FLAIR螺旋桨的运动校正能力

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Patient motion is a common challenge in the clinical setting and fast spin echo longitudinal relaxation time fluid attenuating inversion recovery imaging method with motion correction would be highly desirable. The motion correction provided by transverse relaxation time- and diffusion-weighted periodically rotated overlapping parallel lines with enhanced reconstruction methods has seen significant clinical adoption. However, periodically rotated overlapping parallel lines with enhanced reconstruction with fast spin echo longitudinal relaxation time fluid attenuating inversion recovery-weighting has proved challenging since motion correction requires wide blades that are difficult to acquire while also maintaining short echo train lengths that are optimal for longitudinal relaxation time fluid attenuating inversion recovery-weighting. Parallel imaging provides an opportunity to increase the effective blade width for a given echo train lengths. Coil-by-coil data-driven autocalibrated parallel imaging methods provide greater robustness in the event of motion compared to techniques relying on accurate coil sensitivity maps. However, conventional internally calibrated data-driven parallel imaging methods limit the effective acceleration possible for each blade. We present a method to share a single calibration dataset over all imaging blades on a slice by slice basis using the APPEAR non-Cartesian parallel imaging method providing an effective blade width increase of 2.45×, enabling robust motion correction. Results comparing the proposed technique to conventional Cartesian and periodically rotated overlapping parallel lines with enhanced reconstruction methods demonstrate a significant improvement during subject motion and maintaining high image quality when no motion is present in normal and clinical volunteers.
机译:患者的运动是临床环境中的普遍挑战,非常需要具有运动校正的快速自旋回波纵向弛豫时间流体衰减反转恢复成像方法。由横向弛豫时间和扩散加权的周期性旋转的重叠平行线以及增强的重建方法提供的运动校正已在临床上得到广泛采用。然而,周期性旋转重叠的平行线具有快速自旋回波纵向弛豫时间的增强重建功能,具有增强的重构,流体衰减的反演恢复权重已被证明具有挑战性,因为运动校正需要很难获得的宽叶片,同时还需要保持最短的回波列长度,这对于纵向驰豫是最佳的时间流体衰减反演恢复权重。对于给定的回波列长度,并行成像提供了增加有效叶片宽度的机会。与依赖精确线圈灵敏度图的技术相比,逐线圈数据驱动的自动校准并行成像方法在运动时具有更高的鲁棒性。然而,常规的内部校准的数据驱动的并行成像方法限制了每个叶片可能的有效加速度。我们提出了一种使用APPEAR非笛卡尔平行成像方法逐个切片地在所有成像刀片上共享单个校准数据集的方法,该方法提供有效的刀片宽度增加2.45倍,从而实现了强大的运动校正。将建议的技术与常规的笛卡尔坐标系和周期性旋转重叠的平行线与增强的重建方法进行比较的结果表明,在正常运动和临床志愿者中不存在运动时,在受试者运动过程中可以显着改善并保持高图像质量。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号