首页> 外文期刊>Magnetic Resonance in Chemistry: MRC >Rapid parameter optimization of low signal-to-noise samples in NMR spectroscopy using rapid CPMG pulsing during acquisition: Application to recycle delays
【24h】

Rapid parameter optimization of low signal-to-noise samples in NMR spectroscopy using rapid CPMG pulsing during acquisition: Application to recycle delays

机译:在采集过程中使用快速CPMG脉冲在NMR光谱中对低信噪比样品进行快速参数优化:应用于循环延迟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A method is presented that combines Carr-Purcell-Meiboom-Gill (CPMG) during acquisition with either selective or nonselective excitation to produce a considerable intensity enhancement and a simultaneous loss in chemical shift information. A range of parameters can theoretically be optimized very rapidly on the basis of the signal from the entire sample (hard excitation) or spectral subregion (soft excitation) and should prove useful for biological, environmental, and polymer samples that often exhibit highly dispersed and broad spectral profiles. To demonstrate the concept, we focus on the application of our method to T_1 determination, specifically for the slowest relaxing components in a sample, which ultimately determines the optimal recycle delay in quantitative NMR. The traditional inversion recovery (IR) pulse program is combined with a CPMG sequence during acquisition. The slowest relaxing components are selected with a shaped pulse, and then, low-power CPMG echoes are applied during acquisition with intervals shorter than chemical shift evolution (RCPMG) thus producing a single peak with an SNR commensurate with the sum of the signal integrals in the selected region. A traditional ~(13)C IR experiment is compared with the selective ~(13)C IR-RCPMG sequence and yields the same T_1 values for samples of lysozyme and riverine dissolved organic matter within error. For lysozyme, the RCPMG approach is ~70 times faster, and in the case of dissolved organic matter is over 600 times faster. This approach can be adapted for the optimization of a host of parameters where chemical shift information is not necessary, such as cross-polarization/mixing times and pulse lengths.
机译:提出了一种在采集过程中将Carr-Purcell-Meiboom-Gill(CPMG)与选择性或非选择性激发相结合的方法,以产生相当大的强度增强并同时损失化学位移信息。理论上,可以根据来自整个样品(硬激发)或光谱子区域(软激发)的信号非常快速地优化一系列参数,并且应该证明对通常表现出高度分散和宽泛的生物,环境和聚合物样品有用光谱图。为了证明这一概念,我们着重于将我们的方法应用于T_1测定,特别是针对样品中最慢的弛豫成分的应用,这最终确定了定量NMR中的最佳循环延迟。在采集过程中,传统的反转恢复(IR)脉冲程序与CPMG序列结合在一起。用整形脉冲选择最慢的弛豫分量,然后在采集过程中以比化学位移演化(RCPMG)短的时间间隔应用低功率CPMG回波,从而产生一个信噪比与信号积分之和相对应的单个峰。所选区域。将传统的〜(13)C IR实验与选择性〜(13)C IR-RCPMG序列进行比较,得出溶菌酶和河水溶解有机物样品在误差范围内的T_1值相同。对于溶菌酶,RCPMG方法的速度要快约70倍,而溶解的有机物的速度要快600倍以上。这种方法可以适用于在不需要化学位移信息的情况下优化大量参数,例如交叉极化/混合时间和脉冲长度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号