首页> 外文期刊>journal of applied physics >Electrical properties and conduction mechanisms of Ru‐based thick‐film (cermet) resistors
【24h】

Electrical properties and conduction mechanisms of Ru‐based thick‐film (cermet) resistors

机译:Ruhyphen-based thick‐film (cermet) 电阻器的电性能及传导机制

获取原文
获取外文期刊封面目录资料

摘要

This paper presents an experimental study of the electrical conduction mechanisms in thick‐film (cermet) resistor. The resistors were made from one custom and three commercially formulated inks with sheet resistivities ranging from 102to 106OHgr;/laplac; in decade increments. Their microstructure and composition have been examined using optical and scanning electron microscopy, electron microprobe analysis, x‐ray diffraction, and various chemical analyses. This portion of our study shows that the resistors are heterogeneous mixtures of metallic metal oxide particles (∼4×10−5cm in diameter) and a lead silicate glass. The metal oxide particles are ruthenium containing pyrochlores, and are joined to form a continuous three‐dimensional network of chain segments. The principal experimental work reported here is an extensive study of the electrical transport properties of the resistors. The temperature dependence of conductance has been measured from 1.2 to 400 K, and two features common to all resistors are found. There is a pronounced decrease in conductance at low temperatures and a shallow maximum at several hundred Kelvin. Within the same range of temperatures the reversible conductance as a function of electric field from 0 to 28 kV/cm has been studied. The resistors are non‐Ohmic at all temperatures, but particularly at cryogenic temperatures for low fields. At higher fields the conductance shows a linear variation with electric field. The thick‐film resistors are found to have a small dielectric constant and a (nearly) frequency‐independent conductance from dc to 50 MHz. The magnetoresistance to 100 kG, the Hall mobility, and the Seebeck coefficient of most of the resistors have been measured and discovered to be quite small. Many of the electrical transport properties have also been determined for the metal oxide particles which were extracted from the fired resistors. These results yielded a quantitative estimate of the metal oxide contribution to the total thick‐film resistance. Using the results of our measurements we examine four broad categories of conduction mechanism models which have been previously suggested in the literature: uniform, uniform channel, nontunneling barrier, and tunneling barrier models. The first three categories are systematically rejected because of disagreements with the data. A tunnel barrier model is then developed which incorporates two features not ordinarily considered in simple tunneling theory. The small metal oxide particle size is shown to cause a small activation energy associated with electrostatic charging of the particles. Also, impurities within the tunnel barriers are presumed to act as resonant centers which increase the barrier transmission coefficient. The model is compared in detail to our experimental results and shown to be in excellent agreement.
机译:本文对厚连字符膜(金属陶瓷)电阻的导电机理进行了实验研究。电阻器由一种定制油墨和三种商业配方油墨制成,片状电阻率范围为 102 至 106 倍,以十倍率为增量。它们的微观结构和组成已经使用光学和扫描电子显微镜、电子显微探针分析、x&连字符;射线衍射和各种化学分析进行了检查。我们研究的这一部分表明,电阻器是金属金属氧化物颗粒(直径约4×10-5cm)和硅酸铅玻璃的非均相混合物。金属氧化物颗粒是含钌的焦绿泥石,并连接形成连续的三维链段网络。这里报告的主要实验工作是对电阻器的电传输特性的广泛研究。电导的温度依赖性测量范围为1.2至400 K,并发现了所有电阻器的两个共同特性。低温时电导明显降低,几百开尔文时最大值较浅。在相同的温度范围内,研究了可逆电导随电场的变化,从0到28 kV/cm。电阻在所有温度下都是非连字符的,尤其是在低温下,对于低磁场。在较高的磁场下,电导随电场呈线性变化。厚膜电阻器具有较小的介电常数和(几乎)频率与直流至50 MHz的频率无关电导。大多数电阻器的磁阻为100 kG,霍尔迁移率和塞贝克系数已经测量并发现非常小。对于从发射电阻器中提取的金属氧化物颗粒,也已经确定了许多电传输特性。这些结果对金属氧化物对总厚膜电阻的贡献进行了定量估计。利用我们的测量结果,我们研究了之前在文献中提出的四大类传导机制模型:均匀通道、均匀通道、非隧道屏障和隧道屏障模型。由于与数据不一致,前三个类别被系统地拒绝。然后开发了一个隧道屏障模型,该模型包含了简单隧道理论中通常不考虑的两个特征。小的金属氧化物粒径被证明会引起与颗粒静电相关的小活化能。此外,推测隧道屏障内的杂质充当谐振中心,从而增加屏障传输系数。将该模型与我们的实验结果进行了详细比较,并显示出极好的一致性。

著录项

  • 来源
    《journal of applied physics》 |1977年第12期|5152-5169|共页
  • 作者

    G. E. Pike; C. H. Seager;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号