首页> 外文期刊>Functional & integrative genomics >Molecular and functional characterization of the durum wheat TdRL1, a member of the conserved Poaceae RSS1-like family that exhibits features of intrinsically disordered proteins and confers stress tolerance in yeast
【24h】

Molecular and functional characterization of the durum wheat TdRL1, a member of the conserved Poaceae RSS1-like family that exhibits features of intrinsically disordered proteins and confers stress tolerance in yeast

机译:硬粒小麦TdRL1的分子和功能表征,它是保守的禾本科RSS1样家族的成员,具有固有的无序蛋白特征并赋予酵母抗逆性

获取原文
获取原文并翻译 | 示例
           

摘要

Because of their fixed lifestyle, plants must acclimate to environmental changes by orchestrating several responses ranging from protective measures to growth control. Growth arrest is observed upon abiotic stress and can cause penalties to plant production. But, the molecular interface between stress perception and cell cycle control is poorly understood. The rice protein RSS1 is required at G1/S transition ensuring normal dividing activity of proliferative cells during salt stress. The role of RSS1 in meristem maintenance together with its flexible protein structure implies its key function as molecular integrator of stress signaling for cell cycle control. To study further the relevance of RSS1 and its related proteins in cereals, we isolated the durum wheat homolog, TdRL1, from Tunisian durum wheat varieties and extended our analyses to RSS1-like proteins from Poaceae. Our results show that the primary sequences of TdRL1 and the Graminae RSS1-like family members are highly conserved. In silico analyses predict that TdRL1 and other RSS1-like proteins share flexible 3-D structures and have features of intrinsically disordered/unstructured proteins (IDP). The disordered structure of TdRL1 is well illustrated by an electrophoretical mobility shift of the purified protein. Moreover, heterologous expression of TdRL1 in yeast improves its tolerance to salt and heat stresses strongly suggesting its involvement in abiotic stress tolerance mechanisms. Such finding adds new knowledge to our understanding of how IDPs may contribute as central molecular integrators of stress signaling into improving plant tolerance to abiotic stresses.
机译:由于其固定的生活方式,植物必须通过协调从保护措施到生长控制的多种响应来适应环境变化。在非生物胁迫下观察到生长停滞,并可能对植物生产造成不利影响。但是,对应力感知和细胞周期控制之间的分子界面了解甚少。大米蛋白质RSS1在G1 / S过渡过程中是必需的,以确保盐胁迫期间增殖细胞的正常分裂活性。 RSS1在分生组织维持中的作用及其灵活的蛋白质结构暗示了其作为应激信号分子整合剂的关键功能,可用于细胞周期控制。为了进一步研究谷物中RSS1及其相关蛋白的相关性,我们从突尼斯硬粒小麦品种中分离了硬粒小麦同源物TdRL1,并将分析扩展到禾本科的RSS1样蛋白。我们的结果表明,TdRL1和类似Graminae RSS1的家族成员的主要序列是高度保守的。计算机分析表明,TdRL1和其他RSS1样蛋白共享灵活的3-D结构,并具有固有无序/非结构化蛋白(IDP)的特征。 TdRL1的无序结构很好地说明了纯化蛋白的电泳迁移率。此外,TdRL1在酵母中的异源表达提高了其对盐和热胁迫的耐受性,这强烈表明其参与了非生物胁迫耐受机制。这一发现为我们对IDP如何作为胁迫信号的中心分子整合剂有助于提高植物对非生物胁迫的耐受性的理解提供了新的认识。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号