...
首页> 外文期刊>Freshwater Biology >Ecosystem metabolism and nutrient dynamics in the main channel and backwaters of the Upper Mississippi River
【24h】

Ecosystem metabolism and nutrient dynamics in the main channel and backwaters of the Upper Mississippi River

机译:密西西比河上游主要河道和回水区的生态系统代谢和养分动态

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Photosynthesis and respiration are primary drivers of dissolved oxygen dynamics in rivers. We measured dissolved oxygen dynamics, aquatic ecosystem metabolism, algal abundance and nutrient concentrations at main channel and backwater sites on a reach of the Upper Mississippi River that borders the states of Wisconsin and Minnesota (U.S.A.). We asked (i) how ecosystem metabolism rates, dissolved oxygen dynamics and nutrient concentrations differed in the main channel and in backwaters, (ii) whether ecosystem metabolism relates to solar irradiance, nutrient concentration, algal abundance, temperature and river discharge and (iii) whether the relationships between ecosystem metabolism and these environmental factors differs between the main channel and backwaters. The rates of aquatic ecosystem metabolism in the main channel were among the highest reported for large rivers. Mean daily gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP) in the main channel in the 2006 growing season were 10, 6 and 4g O(2)m(2) d(-1), respectively. Solar irradiance, discharge and temperature, rather than nutrients, accounted for most temporal variability in gross primary production (GPP). Discharge was negatively associated with GPP in the main channel and temperature positively associated with GPP in backwaters. Primary production consistently exceeded respiration in the main channel in summer, resulting in persistent oxygen supersaturation from late June to early August. Maximum chlorophyll concentrations (140g L-1) were observed in the main channel, rather than the backwaters. Nitrogen and phosphorus exhibited contrasting temporal patterns in backwaters probably reflecting differences in their sources and sinks; N declined during the growing season while P increased.
机译:光合作用和呼吸作用是河流中溶解氧动态的主要驱动力。我们在与威斯康星州和明尼苏达州接壤的密西西比河上游的主要河道和死水站点测量了溶解氧动力学,水生生态系统代谢,藻类丰度和养分浓度。我们问(i)在主要水道和死水中生态系统新陈代谢率,溶解氧动力学和养分浓度有何不同;(ii)生态系统新陈代谢是否与太阳辐照度,养分浓度,藻类丰度,温度和河流排放量有关;以及(iii)在主要渠道和死水之间,生态系统代谢与这些环境因素之间的关系是否不同?在主要河流中,主要河道中水生生态系统新陈代谢的速率最高。 2006年生长季节主要渠道的平均每日总初级生产力(GPP),生态系统呼吸(R)和净生态系统生产力(NEP)为10、6和4g O(2)m(2)d(-1),分别。太阳辐照度,排放量和温度而不是营养素是造成初级生产总值(GPP)大部分时间变化的原因。流量与主通道中的GPP呈负相关,而温度与回水中的GPP呈正相关。夏季,主要产品的呼吸一直超过呼吸,因此从6月下旬到8月上旬持续的氧气过饱和。在主要渠道而不是死水中观察到最大叶绿素浓度(140g L-1)。氮和磷在死水中表现出相反的时间格局,这可能反映了其来源和汇的差异。 N在生长季节下降,而P增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号