首页> 外文期刊>Forest Ecology and Management >Modelling soil organic carbon turnover in improved fallows in eastern Zambia using the RothC-26.3 model
【24h】

Modelling soil organic carbon turnover in improved fallows in eastern Zambia using the RothC-26.3 model

机译:使用RothC-26.3模型模拟赞比亚东部改善休耕地的土壤有机碳周转

获取原文
获取原文并翻译 | 示例
           

摘要

Scarcity of simple and reliable methods of estimating soil organic carbon (SOC) turnover and lack of data from long-term experiments make it difficult to estimate attainable soil C sequestration in tropical improved fallows. Testing and validating existing and widely used SOC models would help to determine attainable C storage in fallows. The Rothamsted C (RothC) model, therefore, was tested using empirical data from improved fallows at Msekera in eastern Zambia. This study (i) determined the effects of nitrogen fixing tree (NFT) species on aboveground organic C inputs to the soil and SOC stocks, (ii) estimated annual net organic C inputs to the soil using the RothC, and (iii) tested the performance of RothC model using empirical data from improved fallows. Soil samples (0-20cm) were collected from coppicing and non-coppicing fallow experiments in October 2002 for determination of SOC by LECO CHN-1000 analyser. Data on surface litter, maize and weed biomasses, and on weather, were supplied by the Zambia/ICRAF Agroforestry Project. Measured SOC stocks to 20cm depth ranged from 32.2 to 37.8tha super(-) super(1) in coppicing fallows and 29.5 to 30.1tha super(-) super(1) in non-coppicing fallows compared to 22.2-26.2tha super(-) super(1) in maize monoculture systems. Coppicing fallows accumulated more SOC (680-1150gm super(-) super(2)year super(-) super(1)) than non-coppicing fallows (410-789gm super(-) super(2)year super(-) super(1)). While treatments with NFTs accumulated more SOC than NFT-free systems, SOC stocks increased with increasing tree biomass production and tree rotation. For food security and C sequestration, coppicing fallows are a potentially viable option. The RothC-26.3 model calculates the effect of annual above- and below-ground plant residue inputs to the soil on total organic C, microbial biomass, and radiocarbon age of the soil over a period ranging from a few years to centuries. As plant residue inputs from roots during plant growth are rarely known, the model is most often run in 'inverse' mode to generate total annual plant residue inputs from known soil, site, and weather data. The model, run in reverse, estimated the annual net organic C inputs required to maintain SOC stocks. Estimates ranged from 2.8 to 6.1tha super(-) super(1) in coppicing fallows, 2.2-5.7tha super(-) super(1) in non-coppicing fallows, and from 1.4 to 2.7tha super(-) super(1) in controls. Modelled inputs comprising above- and below-ground organic residues in fallows were 12-104% greater than measured above-ground inputs alone. The model provided a good fit to empirical SOC data in fertilized maize monoculture, and in coppicing and non-coppicing fallows. Modelled inputs for Leucaena, Gliricidia, Senna, Sesbania, and Cajanus closely matched plant C input values estimated in separate studies, suggesting that RothC is giving reasonable simulations of soil C changes under improved fallow conditions in Zambia. However, the DPM/RPM ratio for plant C inputs in fallows was increased from 0.25 to 1.10 to suit their biodegradability characteristics. The RothC model can be used to calculate annual organic C inputs and SOC stocks in improved fallows provided suitable DPM:RPM ratios are used.
机译:估算土壤有机碳(SOC)周转率的简单可靠方法的缺乏以及长期实验数据的缺乏,使得难以估算热带改良休耕地中可达到的土壤碳固存。测试和验证现有的和广泛使用的SOC模型将有助于确定休假中可获得的C存储量。因此,使用来自赞比亚东部Msekera改善休闲的经验数据对Rothamsted C(RothC)模型进行了测试。这项研究(i)确定了固氮树(NFT)物种对地上有机碳输入土壤和SOC储量的影响;(ii)使用RothC估算的土壤年度净有机碳输入,以及(iii)测试了使用来自改进休假的经验数据来提高RothC模型的性能。从2002年10月进行的无休耕和非休耕实验中收集土壤样品(0-20厘米),以使用LECO CHN-1000分析仪测定SOC。赞比亚/ ICRAF农林业项目提供了有关表面凋落物,玉米和杂草生物量以及天气的数据。到20cm深度的实测SOC储量在闲置休耕地中为32.2至37.8tha super(-)super(1),在非闲置休耕地中为29.5至30.1tha super(-)super(1),与22.2-26.2tha super(- )super(1)在玉米单一栽培系统中。休耕休耕累积的SOC(680-1150gm super(-)super(2)year super(-)super(1))比未休耕休耕的SOC(410-789gm super(-)super(2)year super(-)super (1))。尽管使用NFT的处理积累的SOC比不使用NFT的系统更多,但SOC存量随着树木生物量产量和树木轮换的增加而增加。对于粮食安全和固碳,休假是一个潜在的可行选择。 RothC-26.3模型计算了从地上和地下每年向土壤中输入的植物残留物在几年到几个世纪的时间内对土壤中总有机碳,微生物生物量和土壤放射性碳年龄的影响。由于鲜为人知的是植物生长过程中来自根部的植物残基输入,因此该模型通常以“逆向”模式运行,以从已知的土壤,地点和天气数据中生成年度植物残基输入总量。相反,该模型估算了维持SOC库存所需的年度有机碳净输入。估计休耕期的估计范围从2.8到6.1tha super(-)超级(-),非应付休假期的估计在2.2-5.7tha super(-)超级(1),以及1.4到2.7tha super(-)超级(1)。 )。包含休闲中地上和地下有机残留物的模型输入比单独测量的地上输入大12-104%。该模型非常适合于受精玉米单种栽培以及休闲和非休闲休耕期的经验SOC数据。 Leucaena,Gliricidia,Senna,Sesbania和Cajanus的模型输入值与单独研究中估计的植物C输入值非常匹配,这表明RothC在赞比亚改善休耕条件下给出了土壤C变化的合理模拟。但是,休耕中植物C输入的DPM / RPM比从0.25增加到1.10,以适应其生物降解特性。如果使用合适的DPM:RPM比率,则RothC模型可用于计算休耕期中的年度有机碳输入量和SOC存量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号