...
首页> 外文期刊>Forest Ecology and Management >Improving predictions of forest growth using the 3-PGS model with observations made by remote sensing
【24h】

Improving predictions of forest growth using the 3-PGS model with observations made by remote sensing

机译:利用3-PGS模型通过遥感观测改进对森林生长的预测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Measurements made by remote sensing can characterize the leaf area density and nitrogen/chlorophyll content of forest canopies, as well as maximum photosynthetic capacity and above-ground structure and biomass. Combining these with climate data estimated from relationships based on temperature measurements and using an appropriate process-based model, it is possible to calculate, with useful accuracy, carbon sequestration and wood production by different forest types covering large land areas. To broaden its application and reduce the need for detailed information on stand characteristics, a [underlined text: s]atellite-driven version of the model 3-PG, was developed. The 3-PGS model incorporates the major first-order physiological processes that determine forest growth, and the biophysical factors that affect and govern those processes. It incorporates remotely sensed estimates of seasonal variation in canopy light interception (fPAR) and includes physiological variables (stomatal conductance and canopy quantum efficiency) that can be estimated by remote-sensing measurements of factors that influence those variables. 3-PGS therefore provides a useful framework within which to evaluate how data from the array of airborne and satellite-borne sensors now available might be used to initialize, drive, and test process-based growth models across regions with diverse soils and climates. We address the question: to what extent might additional remote-sensing techniques improve 3-PGS predictions? Sensitivity analyses indicate that model accuracy would be most improved through better estimates of seasonal changes in canopy photosynthetic capacity (l) and canopy conductance (G c ). Canopy photosynthetic capacity depends on the amount of light absorbed by the canopy, estimated as a fraction of photosynthetically active radiation (fPAR), and on foliage nitrogen or chlorophyll content, which can be estimated using multi-spectral imagery. G c depends on canopy leaf area index (L) and stomatal conductance of the foliage (g s ), which is affected by the vapor pressure deficit of the air and soil water content. The onset and effects of drought can be determined from changes in canopy reflectance and fPAR identified from sequential measurements; the same measurements, coupled with calculations of evapotranspiration using climatic data and standard formulae, provide estimates of total available water in forest root zones. Periodic surveys with Light Detection and Ranging (LiDAR) and interferometric RADAR may serve to validate model predictions of above-ground growth (NPP A ), while progressive reduction in light-use efficiency (NPP A /APAR) may identify forests with declining vigor that are likely to succumb to attack from insects and pathogens.
机译:遥感测量可以表征森林冠层的叶面积密度和氮/叶绿素含量,以及最大的光合能力和地上结构及生物量。将这些数据与根据温度测量值从关系得出的气候数据结合起来,并使用适当的基于过程的模型,可以有效地计算覆盖大片土地的不同森林类型的固碳量和木材产量。为了扩大其应用范围并减少对展位特征的详细信息的需求,开发了3-PG模型的[带下划线的文字:s]卫星驱动版本。 3-PGS模型包含决定森林生长的主要一阶生理过程,以及影响和控制这些过程的生物物理因素。它结合了遥感对冠层光截获(fPAR)的季节性变化的估计,并包括生理变量(气孔导度和冠层量子效率),这些变量可以通过遥感测量影响那些变量的因素来估计。因此,3-PGS提供了一个有用的框架,可以在其中评估如何从可用的机载和卫星传感器阵列中获得的数据用于在土壤和气候不同的区域之间初始化,驱动和测试基于过程的增长模型。我们解决了这个问题:附加的遥感技术可以在多大程度上改善3-PGS的预测?敏感性分析表明,通过更好地估算冠层光合能力(l)和冠层电导(G c)的季节变化,模型准确性将得到最大的提高。冠层的光合能力取决于冠层吸收的光量(以光合作用活性辐射(fPAR)的一部分估算)以及叶面氮或叶绿素含量(可以使用多光谱图像估算)。 G c取决于冠层叶面积指数(L)和树叶的气孔导度(g s),这受空气中蒸气压亏空和土壤水分的影响。干旱的发生和影响可以通过冠层反射率的变化和顺序测量确定的fPAR来确定。相同的测量值,再加上使用气候数据和标准公式计算的蒸散量,可以估算出森林根区的总可用水量。使用光探测与测距(LiDAR)和干涉式RADAR进行的定期调查可能有助于验证地上生长(NPP A)的模型预测,而光使用效率的逐步降低(NPP A / APAR)可能会发现森林的活力下降,容易屈服于昆虫和病原体的攻击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号