首页> 外文期刊>Canadian Journal of Physics >Exact solution of the unsteady Krook kinetic model and nonequilibrium thermodynamic study for a rarefied gas affected by a nonlinear thermal radiation field
【24h】

Exact solution of the unsteady Krook kinetic model and nonequilibrium thermodynamic study for a rarefied gas affected by a nonlinear thermal radiation field

机译:非线性热辐射场作用下稀有气体的非稳态Krook动力学模型的精确解和非平衡热力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

A development of the previous paper (J. Non-Equilib. Thermodyn. 36, 75 (2011)) is introduced. The nonstationary Krook kinetic equation model for a rarefied gas affected by nonlinear thermal radiation field is solved, instead of the stationary equation. In a frame comoving with the fluid, analytically the Bhatnager-Gross-Krook model kinetic equation is applied. The travelling wave solution method is used to get the exact solution of the nonlinear partial differential equations. These equations were produced from applying the moment method to the unsteady Boltzmann equation. Now we should solve nonlinear partial differential equations in place of nonlinear ordinary differential equations, which represent an arduous task. The unsteady solution gives the problem a great generality and more applications. The new problem is investigated to follow the behavior of the macroscopic properties of the gas, such as the temperature and concentration. They are substituted into the corresponding two-stream maxiwallian distribution functions permitting us to investigate the nonequilibrium thermodynamic properties of the system (gas particles + the heated plate). The entropy, entropy flux, entropy production, thermodynamic forces, and kinetic coefficients are obtained. We investigate the verification of the Boltzmann H-theorem, Le Chatelier principle, the second law of thermodynamic and the celebrated Onsager's reciprocity relation for the system. The ratios between the different contributions of the internal energy changes based upon the total derivatives of the extensive parameters are estimated via the Gibbs formula. The results are applied to helium gas for various radiation field intensities due to different plate temperatures. Graphics illustrating the calculated variables are drawn to predict their behavior and the results are discussed.
机译:介绍了先前论文的发展(J. Non-Equilib。Thermodyn。36,75(2011))。求解了非线性热辐射场影响的稀有气体的非平稳Krook动力学方程模型,而不是平稳方程。在与流体共同运动的框架中,应用了Bhatnager-Gross-Krook模型动力学方程。使用行波解法来获得非线性偏微分方程的精确解。这些方程是通过将矩量法应用到非稳态Boltzmann方程而产生的。现在我们应该解决非线性偏微分方程,以代替非线性的常微分方程,它代表着艰巨的任务。不稳定的解决方案使该问题具有很大的普遍性,并得到了更多的应用。对新问题进行了研究,以遵循气体的宏观特性(例如温度和浓度)的行为。将它们替换为相应的两流maxiwallian分布函数,使我们能够研究系统的非平衡热力学性质(气体颗粒+受热板)。获得了熵,熵通量,熵产生,热力学力和动力学系数。我们研究了玻尔兹曼H定理,Le Chatelier原理,热力学第二定律以及著名的Onsager互易关系的验证。基于广泛参数的总导数的内部能量变化的不同贡献之间的比率通过吉布斯公式进行估算。由于板温度不同,该结果适用于氦气的各种辐射场强度。绘制说明计算出的变量的图形以预测其行为并讨论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号