首页> 外文期刊>Flow, turbulence and combustion >Effects of Spray and Turbulence Modelling on the Mixing and Combustion Characteristics of an n-heptane Spray Flame Simulated with Dynamic Adaptive Chemistry
【24h】

Effects of Spray and Turbulence Modelling on the Mixing and Combustion Characteristics of an n-heptane Spray Flame Simulated with Dynamic Adaptive Chemistry

机译:喷雾和湍流模型对动态适应化学模拟正庚烷喷雾火焰混合燃烧特性的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Accurate modelling of spray combustion process is essential for efficiency improvement and emissions reduction in practical combustion engines. In this work, both unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and large eddy simulations (LES) are performed to investigate the effects of spray and turbulence modelling on the mixing and combustion characteristics of an n-heptane spray flame in a constant volume chamber at realistic conditions. The non-reacting spray process is first simulated with URANS to investigate the effects of entrainment gas-jet model on the penetration characteristics and fuel vapor distributions. It is found that the droplet motion near the nozzle has significant influence on the fuel vapor distribution, while the liquid penetration length is controlled by the evaporation process and insensitive to gas-jet model. For the case considered, both URANS with the gas-jet model and large eddy simulations can properly predict the vapor penetration. For the combustion characteristics, it is found that LES yields better predictions in the global combustion characteristics. The URANS with gas jet model yields a comparable flame length and lift-off-length (LOL) to LES, but results in a larger ignition delay time compared to the experimental data. Another focus of this work is to qualify the convergence characteristics of the dynamic adaptive chemistry (DAC) method in these transient combustion simulations, where DAC is applied to reduce the mechanism locally and on-the-fly to accelerate chemistry calculations. The instantaneous flame structures and global combustion characteristics such as ignition delay time, flame lift-off length and emissions are compared between simulations with and without DAC. For URANS, good agreements are observed both on instantaneous flame structures and global characteristics. For LES, it is shown that the errors incurred by DAC are small for scatter distributions in composition space and global combustion characteristics, while they may significantly affect instantaneous flame structures in physical space. The study reveals that for DAC application in transient simulations, global or statistic information should be used to assess the accuracy, such as manifolds in composition space, conditional quantities and global combustion characteristics. For the cases investigated, a speed-up factor of more than two is achieved by DAC with a 92-species skeletal mechanism with less than 0.2 % and 3.0 % discrepancy in ignition delay and LOL, respectively.
机译:喷雾燃烧过程的准确建模对于提高实际内燃机的效率和减少排放至关重要。在这项工作中,进行了非稳态的雷诺平均Navier-Stokes(URANS)模拟和大涡流模拟(LES),以研究喷雾和湍流模型对恒定温度下正庚烷喷雾火焰的混合和燃烧特性的影响。实际条件下的容积室。首先用URANS模拟非反应喷雾过程,以研究夹带气体喷射模型对渗透特性和燃料蒸汽分布的影响。发现喷嘴附近的液滴运动对燃料蒸气分布有显着影响,而液体的渗透长度受蒸发过程控制且对气体喷射模型不敏感。对于所考虑的情况,具有气体喷射模型的URANS和大型涡流模拟都可以正确预测蒸气渗透。对于燃烧特性,发现LES对整体燃烧特性有更好的预测。具有气体喷射模型的URANS可产生与LES相当的火焰长度和升起长度(LOL),但与实验数据相比,点火延迟时间更长。这项工作的另一个重点是在这些瞬态燃烧模拟中验证动态自适应化学(DAC)方法的收敛特性,其中使用DAC来局部减小机理并实时地加快化学计算速度。在有和没有DAC的模拟之间,比较了瞬时火焰结构和整体燃烧特性,例如点火延迟时间,火焰升起长度和排放。对于URANS,在瞬时火焰结构和整体特性上都观察到了很好的协议。对于LES,表明对于组成空间和整体燃烧特性的散布分布,DAC引起的误差很小,而它们可能会严重影响物理空间中的瞬时火焰结构。研究表明,对于DAC在瞬态仿真中的应用,应使用全局或统计信息来评估精度,例如组成空间中的歧管,条件量和全局燃烧特性。对于所研究的情况,具有92种骨骼机制的DAC达到了大于两倍的加速因子,点火延迟和LOL的差异分别小于0.2%和3.0%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号