首页> 外文期刊>Biochemistry >Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability.
【24h】

Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability.

机译:热与胍诱导的泛素解折叠。电荷相互作用对蛋白质稳定性的贡献分析。

获取原文
获取原文并翻译 | 示例
       

摘要

We have characterized the guanidine-induced unfolding of both yeast and bovine ubiquitin at 25 degrees C and in the acidic pH range on the basis of fluorescence and circular dichroism measurements. Unfolding Gibbs energy changes calculated by linear extrapolation from high guanidine unfolding data are found to depend very weakly on pH. A simple explanation for this result involves the two following assumptions: (1) charged atoms of ionizable groups are exposed to the solvent in native ubiquitin (as supported by accessible surface area calculations), and Gibbs energy contributions associated with charge desolvation upon folding (a source of pK shifts) are small; (2) charge-charge interactions (another source of pK shifts upon folding) are screened out in concentrated guanidinium chloride solutions. We have also characterized the thermal unfolding of both proteins using differential scanning calorimetry. Unfolding Gibbs energy changes calculated from the calorimetric data do depend strongly on pH, a result that we attribute to the pH dependence of charge-charge interactions (not eliminated in the absence of guanidine). In fact, we find good agreement between the difference between the two series of experimental unfolding Gibbs energy changes (determined from high guanidine unfolding data by linear extrapolation and from thermal denaturation data in the absence of guanidine) and the theoretical estimates of the contribution from charge-charge interactions to the Gibbs energy change for ubiquitin unfolding obtained by using the solvent-accessibility-corrected Tanford-Kirkwood model, together with the Bashford-Karplus (reduced-set-of-sites) approximation. This contribution is found to be stabilizing at neutral pH, because most charged groups on the native protein interact mainly with groups of the opposite charge, a fact that, together with the absence of large charge-desolvation contributions, may explain the high stability of ubiquitin at neutral pH. In general, our analysis suggests the possibility of enhancing protein thermal stability by adequately redesigning the distribution of solvent-exposed, charged residues on the native protein surface.
机译:基于荧光和圆二色性测量,我们已在25℃和酸性pH范围内表征了胍诱导的酵母和牛泛素的解折叠。从高胍的展开数据通过线性外推法计算出的吉布斯能量变化被发现非常不依赖于pH。对于此结果的简单解释涉及以下两个假设:(1)可电离基团的带电原子在天然泛素中暴露于溶剂中(如可及的表面积计算所支持),以及折叠时电荷去溶剂化的吉布斯能量贡献(a pK偏移的来源很小); (2)在浓氯化胍溶液中筛选出电荷-电荷相互作用(折叠时pK位移的另一个来源)。我们还使用差示扫描量热法表征了两种蛋白质的热解折叠。由量热数据计算得出的吉布斯能量变化的确确实取决于pH,这一结果归因于电荷-电荷相互作用的pH依赖性(在没有胍的情况下不能消除)。实际上,我们发现两个实验展开吉布斯能量变化系列的差异(由线性推断推断的高胍展开数据和不含胍的热变性数据确定)与电荷贡献的理论估算值之间存在良好的一致性通过使用溶剂可及性校正的Tanford-Kirkwood模型,以及Bashford-Karplus(简化位置集)近似,获得了与遍在蛋白展开的Gibbs能量变化的电荷相互作用。发现该贡献在中性pH下稳定,因为天然蛋白质上的大多数带电基团主要与相反电荷的基团相互作用,这一事实加上缺乏大量的去溶剂化作用,可以解释泛素的高稳定性在中性pH下。通常,我们的分析表明,通过适当地重新设计天然蛋白质表面上暴露于溶剂的带电残基的分布,可以增强蛋白质的热稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号