...
首页> 外文期刊>Food & Function >Numerical simulation of adsorption and bubble interaction in protein foams using a lattice Boltzmann method.
【24h】

Numerical simulation of adsorption and bubble interaction in protein foams using a lattice Boltzmann method.

机译:使用格子玻尔兹曼方法的蛋白质泡沫中吸附和气泡相互作用的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

The adsorption process and the resulting dynamic surface tension in the context of protein foams were studied. A diffusion-advection equation is solved using a lattice Boltzmann method (LBM) in order to simulate the adsorption of surfactants on a surface. With different adsorption isotherms, different surfactants can be modelled. The advection is driven by a flow field coming from the LBM. The phase transition is implemented with a free surface LBM approach where the liquid-gas two-phase flow is simplified to a single-phase free surface flow by using a volume of fluid approach. Looking at the different time scales for diffusion and advection, which are determined by the diffusion coefficient and the viscosity, respectively, the LBM is limited due to time and space resolution. The rates of protein transport to a surface by diffusion and by advection are investigated which indicate that diffusion is only relevant for modelling long-time studies. For those time ranges and low concentrations, the diffusion of proteins from a bulk to a surface of a droplet is simulated and compared with the literature. As a next step, situations as in protein foams are assumed. High concentrations of proteins, e.g. as in milk, result in a simplified scenario where neither diffusion nor advection is important. This is analysed theoretically which suggests an instantaneous change of surface tension. To examine the stability of foam lamellae, this is used for further simulations. Two bubbles rise close to each other with globally different surface tensions as for pure water and water with proteins. Depending on these surface tensions and the initial distance, the bubbles coalesce faster for high surface tensions and show less secondary motions for lower surface tension. It is concluded that bubbles in protein foams coalesce only at shorter distances than in pure water.
机译:研究了蛋白质泡沫中的吸附过程和由此产生的动态表面张力。为了模拟表面活性剂在表面上的吸附,使用格子玻尔兹曼方法(LBM)求解了扩散对流方程。使用不同的吸附等温线,可以模拟不同的表面活性剂。对流由来自LBM的流场驱动。相变是通过自由表面LBM方法实现的,其中通过使用一定体积的流体方法,将液气两相流简化为单相自由表面流。查看分别由扩散系数和粘度确定的不同的扩散和对流时间尺度,由于时间和空间分辨率,LBM受到限制。研究了蛋白质通过扩散和对流传输到表面的速率,这表明扩散仅与建模长期研究有关。对于那些时间范围和低浓度,模拟了蛋白质从团块到液滴表面的扩散,并与文献进行了比较。下一步,假设存在蛋白质泡沫中的情况。高浓度的蛋白质,例如如牛奶中那样,导致简化的方案,扩散和对流都不重要。从理论上分析这表明表面张力的瞬时变化。为了检查泡沫薄片的稳定性,将其用于进一步的模拟。两个气泡以纯净水和含蛋白水的表面张力彼此接近地上升。取决于这些表面张力和初始距离,气泡对于较高的表面张力会更快地聚结,而对于较低的表面张力则显示较少的二次运动。结论是,蛋白质泡沫中的气泡仅在比纯水中短的距离处聚结。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号