...
首页> 外文期刊>Progress in photovoltaics >Prediction of local temperature‐dependent performance of silicon solar cells
【24h】

Prediction of local temperature‐dependent performance of silicon solar cells

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract In this study, we present a method to predict the local temperature‐dependent performance of silicon solar cells from wafer lifetime images, which enables local investigation of silicon solar cell parameters under realistic operation conditions. The multicrystalline silicon wafers investigated underwent high‐temperature steps equivalent to emitter diffusion and contact firing for the production of a passivated emitter and rear cell (PERC) solar cell. Injection and temperature‐dependent lifetime images, gathered by calibrated photoluminescence (PL) imaging, are combined with numerical cell device simulations using Quokka3. Hereby, the spatially resolved open‐circuit voltage V OC , short‐circuit current density j SC , fill factor FF , and the efficiency η of a virtual solar cell based on the characterized material are predicted for various temperatures. These data are used to compute temperature coefficients of the aforementioned cell parameters. Our predictions are validated by a comparison with measurement results of cells made from sister wafers, which are analyzed globally and spatially resolved via PL imaging, Lock‐in Thermography, and Light‐Beam‐Induced‐Current measurements. We observed a lower temperature sensitivity of IV parameters in dislocation clusters despite of expecting high changes with temperature, which might be explainable by Shockley‐Read‐Hall (SRH) recombination of impurities like interstitial chromium.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号