首页> 外文期刊>Advanced functional materials >2D Nanospace Confined Synthesis of Pseudocapacitance-Dominated MoS2-in-Ti3C2 Superstructure for Ultrafast and Stable Li/Na-Ion Batteries
【24h】

2D Nanospace Confined Synthesis of Pseudocapacitance-Dominated MoS2-in-Ti3C2 Superstructure for Ultrafast and Stable Li/Na-Ion Batteries

机译:用于超快稳定锂/钠离子电池的赝电容主导的MoS2-in-Ti3C2超结构的二维纳米空间受限合成

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Exploring a universal strategy to implement the precise control of 2D nanomaterials in size and layer number is a big challenge for achieving ultrafast and stable Li/Na-ion batteries. Herein, the confined synthesis of 1-3 layered MoS2 nanocrystals into 2D Ti3C2 interlayer nanospace with the help of electrostatic attraction and subsequent cetyltrimethyl ammonium bromide (CTAB) directed growth is reported. The MoS2 nanocrystals are tightly anchored into the interlayer by 2D confinement effect and strong MoC covalent bond. Impressively, the disappearance of Li+ intercalated into MoS2 reduction peak is successfully observed for the first time in the experiment, showing in a typical surface-controlled charge storage behavior. The pseudocapacitance-dominated contribution guarantees a much faster and more stable Li/Na storage performance. As predicted, this electrode exhibits a very high Li+ storage capacity of 340 mAh g(-1) even at 20 A g(-1) and a long cycle life (1000 times). It also shows an excellent Na+ storage capacity of 310 mAh g(-1) at 1 A g(-1) with a 1600 times high-rate cycling. Such impressive confined synthesis strategy can be extended to the precise control of other 2D nanomaterials.
机译:探索一种通用策略来实现二维纳米材料尺寸和层数的精确控制,是实现超快稳定的锂/钠离子电池的一大挑战。本文报道了在静电吸引力的帮助下,将1-3层状MoS2纳米晶体有限合成为2D Ti3C2层间纳米空间,并随后的十六烷基三甲基溴化铵(CTAB)定向生长。MoS2纳米晶体通过二维约束效应和强MoC共价键紧密锚定在层间。令人印象深刻的是,在实验中首次成功观察到插入MoS2还原峰的Li+消失,表现为典型的表面控制电荷存储行为。以赝电容为主的贡献保证了更快、更稳定的 Li/Na 存储性能。正如预测的那样,即使在 20 A g(-1) 下,该电极也表现出 340 mAh g(-1) 的非常高的 Li+ 存储容量和较长的循环寿命(>1000 次)。它还显示出 310 mAh g(-1) 在 1 A g(-1) 和 1600 倍高速循环时的出色 Na+ 存储容量。这种令人印象深刻的受限合成策略可以扩展到其他二维纳米材料的精确控制。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号