...
首页> 外文期刊>Field Crops Research >Contrasting stomatal regulation and leaf ABA concentrations in wheat genotypes when split root systems were exposed to terminal drought (Reprinted from Field Crops Research, vol 162, pg 77-86, 2014)
【24h】

Contrasting stomatal regulation and leaf ABA concentrations in wheat genotypes when split root systems were exposed to terminal drought (Reprinted from Field Crops Research, vol 162, pg 77-86, 2014)

机译:当分裂的根系暴露于极端干旱下时,小麦基因型的气孔调节和叶片ABA浓度不同(转载自《田间作物研究》,第162卷,第77-86页,2014年)

获取原文
获取原文并翻译 | 示例
           

摘要

Wheat grown in the Mediterranean-type environments of southern Australia is often exposed to end-of-season drought (terminal drought). During the development of terminal drought, soil dries from the top of the profile exposing the upper part of the root system to water stress while deeper roots may still be able to access deeper soil water for grain filling. It is hypothesised that the part of the root system exposed to drying soil signals abscisic acid (ABA) production and the corresponding rise in ABA concentration in leaves causes partial stomatal closure, regulating the extraction of available water at depth. In the first step to test this hypothesis, a glasshouse experiment was conducted to identify contrasting stomatal response to terminal drought and production of ABA using four wheat genotypes adapted to different soil moisture environments. Terminal drought was induced by withholding water from anthesis in one half (WD) or both halves (DD) of the root system using split pots. Stomatal conductance decreased in all four genotypes in WD plants, but leaf ABA concentration and leaf water status differed. The cultivar Drysdale had higher leaf ABA concentrations and lower stomatal conductance, but leaf water status decreased. Leaf ABA concentration did not increase in WD plants of the breeding line IGW-3262, but stomatal conductance decreased and leaf water status was unchanged. All the genotypes behaved similarly under DD conditions, with increased leaf ABA concentration, lower stomatal conductance and severely dehydrated leaves. The possible causes of the above differences in leaf ABA concentration despite similar stomatal behaviour in wheat genotypes are discussed
机译:在澳大利亚南部的地中海型环境中种植的小麦通常会遭受季末干旱(终末干旱)的影响。在终末干旱的发展过程中,土壤从轮廓的顶部干燥,使根系的上部受到水分胁迫,而较深的根仍可能能够吸收较深的土壤水用于谷物灌浆。假设暴露于干燥土壤中的根系部分信号表示脱落酸(ABA)的产生,并且叶片中ABA浓度的相应升高会导致部分气孔闭合,从而调节深处可用水的提取。在检验该假设的第一步中,进行了温室试验,以使用四种适应于不同土壤水分环境的小麦基因型,鉴定气孔对终末干旱和ABA产生的反差。通过使用分体盆将花粉中的水分留在根系的一半(WD)或两半(DD)中,可以诱导最终干旱。 WD植物中所有四种基因型的气孔导度均下降,但叶片ABA浓度和叶片水分状况不同。 Drysdale品种的叶片ABA浓度较高,气孔导度较低,但叶片水分状况下降。在IGW-3262育种系的WD植物中,叶片ABA的浓度没有增加,但气孔导度下降,叶片水分状况没有变化。在DD条件下,所有基因型的表现相似,叶片ABA浓度增加,气孔导度降低,叶片严重脱水。讨论了尽管小麦基因型相似的气孔行为,但叶片ABA浓度存在上述差异的可能原因

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号