...
首页> 外文期刊>Field Crops Research >Making sense of yield trade-offs in a crop sequence: A New Zealand case study
【24h】

Making sense of yield trade-offs in a crop sequence: A New Zealand case study

机译:理解作物序列中的产量权衡:新西兰案例研究

获取原文
获取原文并翻译 | 示例

摘要

Crop growth is driven by the capture and utilisation of solar radiation. The most productive crop sequences are those that maximise the interception and use of solar radiation. However, there are yield trade-offs because of the timing of transitions between successive crops. A longer duration of one crop will mean that the following crop is sown later and will therefore produce a lower yield. Maximising the yield of a sequence involves a compromise between the yields of successive crops. We describe a case study of a forage cropping rotation in New Zealand, demonstrating how simulation models can be used to define the best compromise between the yields of successive crops, and thereby maximise the total yield of the full sequence.A case study using a series of long-term simulation experiments for four diverse environments in New Zealand was undertaken in a continuous, summer maize - winter cereal, cropping sequence. Maize sowing dates and hybrid durations, and cereal sowing and harvest times were varied systematically. The actual simulated crop and sequence yields varied from site to site, but there was a consistent trend identifying the most productive combinations of sowing date and hybrid duration. The sequence of comparatively late sowing date of maize (1 December) and a long-season hybrid maximised the total yield of the sequence. The highest sequence yields were achieved by balancing the need to capture a high level of annual solar radiation and the need to have a large proportion of solar radiation captured by maize, which has the greater RUE in summer. This analysis illustrates how crop simulation models can be used to design and understand the processes that give the most productive cropping sequences
机译:作物的生长是由太阳辐射的捕获和利用驱动的。最高产的农作物序列是那些能够最大程度地拦截和利用太阳辐射的序列。但是,由于连续作物之间过渡的时间安排,在产量之间存在取舍。一种作物的持续时间较长,意味着随后的作物播种较晚,因此单产较低。最大化序列产量涉及到后续作物产量之间的折衷。我们描述了一个新西兰牧草轮作的案例研究,展示了如何使用模拟模型来定义连续农作物的产量之间的最佳折衷,从而最大化整个序列的总产量。在一个连续的夏季玉米-冬季谷物,种植顺序中,对新西兰的四个不同环境进行了长期模拟实验。玉米播种日期和杂交持续时间以及谷物播种和收获时间有系统地变化。实际模拟的作物和序列的产量因地点而异,但始终存在一致的趋势,即确定播种期和杂种期的最高产组合。玉米播种时间相对较晚的序列(12月1日)和长期杂交的序列使该序列的总产量最大化。通过平衡捕获高水平的年度太阳辐射的需要和使玉米捕获大量太阳辐射的需要(在夏季的RUE较大)之间取得平衡,可以达到最高的序列产量。该分析说明了如何使用作物模拟模型来设计和理解提供最高生产力的种植顺序的过程

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号