首页> 外文期刊>Global Biogeochemical Cycles >Isotope constraints on water, carbon, and heat fluxes from the northern Great Plains region of North America
【24h】

Isotope constraints on water, carbon, and heat fluxes from the northern Great Plains region of North America

机译:来自北美大平原地区北部的水,碳和热通量的同位素约束

获取原文
获取原文并翻译 | 示例
           

摘要

[ 1] Water vapor flux facilitates the transfer of large amounts of mass and energy from terrestrial ecosystems to the atmosphere, yet the proportions of this flux ascribed to evaporation and plant transpiration are poorly constrained. Here we used a water-isotope mass balance approach to partition evaporation and transpiration water vapor fluxes in the northern Great Plains region of western Canada. Utilizing the proportion of gross watershed area that contributes to annual river flow, we estimated that of the mean annual precipitation ( similar to 490 mm), similar to 7% was transferred to the atmosphere via direct evaporation from water bodies and soils, whereas similar to 50% was returned to the atmosphere by plant transpiration. Further, through the explicit coupling of transpiration and photosynthesis, we estimated that plant transpiration in the watersheds corresponded to an annual photosynthetic carbon flux of similar to 48.9 x 10(12) g C or similar to 325 g C m(-2). Although uncertainty related to this estimate of photosynthetic carbon uptake was substantial owing to the paucity of regional estimates of plant water-use efficiency, it was similar to the flux of carbon released through soil respiration and other independent estimates of primary productivity. The water-isotope mass balance approach in partitioning evaporation and transpiration fluxes at a regional scale was promising, although results revealed that the flux estimates would be greatly improved by longer-term data on the isotope composition of river water, precipitation, and atmospheric moisture, as well as through detailed regional-scale measurements of plant water-use efficiency under various environmental and climatic conditions.
机译:[1]水蒸气通量有助于将大量质量和能量从陆地生态系统转移到大气中,但是归因于蒸发和植物蒸腾作用的水蒸气通量的比例受到限制。在这里,我们使用水-同位素质量平衡方法来划分加拿大西部大平原地区北部的蒸发和蒸腾水汽通量。利用影响年度河流流量的流域总面积比例,我们估计平均年降水量(约490毫米)中有近7%是通过从水体和土壤中直接蒸发而转移到大气中的,而类似于通过植物蒸腾使50%返回大气。此外,通过蒸腾作用和光合作用的显式耦合,我们估计流域中的植物蒸腾作用对应于类似于48.9 x 10(12)g C或类似于325 g C m(-2)的年光合碳通量。尽管由于对植物水分利用效率的区域估算不足,与估算光合碳吸收相关的不确定性很大,但这与通过土壤呼吸释放的碳通量和其他有关初级生产力的独立估算相似。尽管结果表明,通过长期关于河流水,降水和大气水分的同位素组成的长期数据,通量估计值将大大改善,但在区域范围内分配蒸发和蒸腾通量的水-同位素质量平衡方法是有前途的,以及通过在各种环境和气候条件下对植物用水效率进行详细的区域规模测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号