首页> 外文期刊>Global Biogeochemical Cycles >Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change
【24h】

Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change

机译:将氮循环动力学整合到综合科学评估模型中,以研究陆地生态系统对全球变化的响应

获取原文
获取原文并翻译 | 示例
           

摘要

A comprehensive model of terrestrial N dynamics has been developed and coupled with the geographically explicit terrestrial C cycle component of the Integrated Science Assessment Model (ISAM). The coupled C-N cycle model represents all the major processes in the N cycle and all major interactions between C and N that affect plant productivity and soil and litter decomposition. Observations from the LIDET data set were compiled for calibration and evaluation of the decomposition submodel within ISAM.For aboveground decomposition, the calibration is accomplished by optimizing parameters related to four processes: the partitioning of leaf litter between metabolic and structural material, the effect of lignin on decomposition, the climate control on decomposition and N mineralization and immobilization. For belowground decomposition, the calibrated processes include the partitioning of root litter between decomposable and resistant material as a function of litter quality, N mineralization and immobilization. The calibrated model successfully captured both the C and N dynamics during decomposition for all major biomes and a wide range of climate conditions. Model results show that net N immobilization and mineralization during litter decomposition are dominantly controlled by initial N concentration of litter and the mass remaining during decomposition. The highest and lowest soil organic N storage are in tundra (1.24 Kg N m~(-2)) and desert soil (0.06 Kg N m~(-2)). The vegetation N storage is highest in tropical forests (0.5 Kg N m~( -2)), and lowest in tundra and desert (<0.03 Kg N m~(-2))N uptake by vegetation is highest in warm and moist regions, and lowest in cold and dry regions. Higher rates of N leaching are found in tropical regions and subtropical regions where soil moisture is higher. The global patterns of vegetation and soil N, N uptake and N leaching estimated with ISAM are consistent with measurements and previous modeling studies. This gives us confidence that ISAM framework can predict plant N availability and subsequent plant productivity at regional and global scales and furthermore how they can be affected by factors that alter the rate of decomposition, such as increasing atmospheric [CO_2], climate changes, litter quality, soil microbial activity and/or increased N.
机译:已经开发了一个综合的陆地N动力学模型,并与综合科学评估模型(ISAM)的地理上明确的陆地C周期成分相结合。耦合的C-N循环模型代表了N循环中的所有主要过程,以及C和N之间影响植物生产力以及土壤和凋落物分解的所有主要相互作用。对LIDET数据集的观测值进行汇编,以对ISAM中的分解子模型进行校准和评估。对于地上分解,通过优化与以下四个过程相关的参数来完成校准:叶片凋落物在代谢和结构材料之间的分配,木质素的作用在分解上,气候控制在分解和氮矿化和固定化上。对于地下分解,校准过的过程包括根系凋落物在可分解和抗性材料之间的分配,取决于凋落物质量,氮矿化和固定作用。校准后的模型成功捕获了所有主要生物群落和各种气候条件在分解过程中的碳和氮动态。模型结果表明,凋落物分解过程中的净氮固定和矿化主要受凋落物初始氮浓度和分解过程中剩余质量的控制。土壤有机氮储量最高和最低的是苔原(1.24 Kg N m〜(-2))和荒漠土壤(0.06 Kg N m〜(-2))。热带森林中的植被氮储量最高(0.5 Kg N m〜(-2)),苔原和沙漠中的植被氮储量最低(<0.03 Kg N m〜(-2))。在温暖和潮湿的地区,植被对氮的吸收最高。 ,在寒冷和干燥的地区最低。在土壤湿度较高的热带地区和亚热带地区,氮的浸出率较高。用ISAM估算的植被和土壤的全球格局,N,N吸收和N淋溶与实测和先前的建模研究一致。这使我们充满信心,ISAM框架可以预测区域和全球范围内的植物氮素利用率以​​及随后的植物生产力,此外,它们还能受到改变分解速率的因素(如大气[CO_2]的增加,气候变化,垃圾质量)的影响。 ,土壤微生物活性和/或氮含量增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号