...
首页> 外文期刊>Faraday discussions >A computational study of the influence of the ceria surface termination on the mechanism of CO oxidation of isolated Rh atoms
【24h】

A computational study of the influence of the ceria surface termination on the mechanism of CO oxidation of isolated Rh atoms

机译:二氧化铈表面终止对孤立Rh原子CO氧化机理影响的计算研究

获取原文
获取原文并翻译 | 示例
           

摘要

The reaction mechanism for CO oxidation by isolated Rh atoms stabilized on CeO_2(111), CeO_2(110) and CeO_2(100) surfaces is investigated by a combination of Density Functional Theory and kinetic Monte Carlo calculations. On Rh/ CeO_2(111), one adsorbed CO molecule on Rh was found to form a stable intermediate structure with surface O. The reaction cycle cannot be closed because of the strong adsorption of the CO_2 complex. The presence of a second adsorbed CO significantly decreases the desorption energy, thus opening a possible reaction path. Formation of the oxygen vacancy is accompanied by reduction of surface cerium. On Rh/CeO_2(110), adsorbed CO can easily react with a ceria surface O atom due to the lower Ce–O bond energy. Since surface O atom migration is much more facile on Rh/CeO_2(110) than on Rh/CeO_2(111), CO_2 desorption is also more easy for the former surface. Molecular oxygen will adsorb on the resulting vacancy. After desorption of the second CO_2 product molecule by reaction of adsorbed CO with another surface O atom, the adsorbed oxygen molecule migrates spontaneously to the vacancy site and dissociates with negligible barrier. The role of molecular oxygen is to heal the oxygen vacancy rather than being involved in a direct reaction with adsorbed CO. The Rh/ CeO_2(100) model was found to be inactive for CO oxidation, mainly because of the geometric constraints for the adsorbed CO molecule to react with one of the surface O atoms, despite the low Ce–O bond energy of the CeO_2(100) surface. The main reason is the large distance between the C of adsorbed CO and the ceria O surface atoms. The particularities of the CO oxidation mechanism for isolated Rh atoms on these ceria surfaces are in agreement with the experimental activity trends.
机译:结合密度泛函理论和动力学蒙特卡罗计算,研究了稳定在CeO_2(111),CeO_2(110)和CeO_2(100)表面的孤立Rh原子氧化CO的反应机理。在Rh / CeO_2(111)上,发现一个吸附在Rh上的CO分子与表面O形成了稳定的中间结构。由于CO_2络合物的强烈吸附,反应循环无法关闭。第二种吸附的CO的存在显着降低了解吸能,从而打开了可能的反应路径。氧空位的形成伴随着表面铈的减少。在Rh / CeO_2(110)上,由于较低的Ce–O键能,吸附的CO容易与二氧化铈表面的O原子反应。由于在Rh / CeO_2(110)上的表面O原子迁移比在Rh / CeO_2(111)上的表面原子迁移容易得多,因此前者表面的CO_2解吸也更容易。分子氧将吸附在空位上。通过吸附的CO与另一个表面O原子的反应使第二个CO_2产物分子解吸后,吸附的氧分子自发迁移到空位,并以可忽略的屏障解离。分子氧的作用是治愈氧空位,而不是参与与吸附的CO的直接反应。Rh/ CeO_2(100)模型被发现对CO氧化无效,主要是因为吸附的CO的几何约束尽管CeO_2(100)表面的Ce–O键能低,但该分子仍能与表面O原子之一反应。主要原因是吸附的CO的C与二氧化铈O表面原子之间的距离较大。这些二氧化铈表面上分离的Rh原子的CO氧化机理的特殊性与实验活性趋势一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号