...
首页> 外文期刊>Graphs and combinatorics >Euler Tours of Maximum Girth in K_(2n+1) and K_(2n,2n)
【24h】

Euler Tours of Maximum Girth in K_(2n+1) and K_(2n,2n)

机译:在K_(2n + 1)和K_(2n,2n)中的最大周长的欧拉游览

获取原文
获取原文并翻译 | 示例

摘要

Given an eulerian graph G and an Euler tour T of G, the girth of T, denoted by g(T), is the minimum integer k such that some segment of k + 1 consecutive vertices of T is a cycle of length k in G. Let g~E(G) = max g(T) where the maximum is taken over all Euler tours of G. We prove that g~E(K_(2n,2n)) = 4n-4 and 2n-3 ≤ g~E(K_(2n+1)) ≤ 2n-1 for any n ≥ 2. We also show that g~E(K_7) = 4. We use these results to prove the following: 1) The graph K_(2n,2n) can be decomposed into edge disjoint paths of length k if and only if k ≤ 4n-1 and the number of edges in K_(2n,2n) is divisible by k. 2) The graph K_(2n+1) can be decomposed into edge disjoint paths of length k if and only if k ≤ 2n and the number edges in K_(2n+1) is divisible by k.
机译:给定一个欧拉图G和G的欧拉环游T,用g(T)表示的T的周长是最小整数k,因此T的k + 1个连续顶点的某个段是G中长度为k的周期令g〜E(G)=​​ max g(T),其中G的所有欧拉行程都取最大值,我们证明g〜E(K_(2n,2n))= 4n-4且2n-3≤g对于任何n≥2,〜E(K_(2n + 1))≤2n-1。我们还证明g〜E(K_7)=4。我们用这些结果证明以下几点:1)图K_(2n,当且仅当k≤4n-1并且K_(2n,2n)中的边数可被k整除时,2n)才能分解为长度为k的边不相交路径。 2)当且仅当k≤2n并且K_(2n + 1)中的边数可被k整除时,图K_(2n + 1)才能分解为长度为k的边不相交路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号