...
首页> 外文期刊>Global change biology >Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in theCommunity Land Model
【24h】

Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in theCommunity Land Model

机译:植物氮获取的碳成本:社区土地模型中改善的植物氮循环对全球碳循环的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots,N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4Pg C yr(-1) to acquire 1.0 Pg Nyr(-1), and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for similar to 66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2, and warming temperatures) may impact the land C sink.
机译:植物通常将其可利用的碳(C)的大部分消耗在养分获取上-否则可以支持生长。但是,鉴于大多数全球陆地生物圈模型(TBM)不包括养分获取的碳成本,因此这些模型无法代表当前和未来对土地C汇的限制。在这里,我们将植物生产力优化的养分获取模型-固氮吸收模型-整合到最广泛使用的TBM之一-社区土地模型中。基于从菌根,非菌根,固氮微生物和重定位(从衰老的叶片)中获取氮的碳成本,在耦合模型中动态模拟了全球植物氮的吸收。我们发现,在全球范围内,工厂花费2.4Pg C yr(-1)来获取1.0 Pg Nyr(-1),而氮的碳获取成本导致全球净初级生产(NPP)下降了13%。 %。菌根吸收代表了氮素的主要吸收途径,约占植物氮素吸收量的66%。值得注意的是,由于与AM真菌相关的植物在中低位居主导地位,据估计与丛枝菌根(AM)真菌相关的根通常被认为是其在磷(P)吸收中的作用,是全球植物吸收氮的主要来源。 -纬度生物群落。总体而言,我们的耦合模型改善了全球NPP下调的表示,并在全球范围内生成了地下C分配,土壤N吸收和N迁移的空间明确模式。这种模型改进对于预测植物对氮素利用率变化(由于氮素沉积,大气中二氧化碳含量升高和温度升高)的响应如何影响陆地碳汇至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号