首页> 外文期刊>Global change biology >Plants mediate soil organic matter decomposition in response to sea level rise
【24h】

Plants mediate soil organic matter decomposition in response to sea level rise

机译:植物介导海平面上升对土壤有机质的分解

获取原文
获取原文并翻译 | 示例
           

摘要

Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field-based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated via (CO2)-C-13. Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM-derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR.
机译:潮汐沼泽具有生产和储存有机物质的巨大能力,这使其在全球碳预算中的作用与陆地面积成比例。这些系统中存储的大多数有机物都在土壤中,与等量的矿物质相比,土壤对表面积聚的贡献是其2-5倍。土壤有机质(SOM)隔离是潮汐沼泽高架在潮汐框架中的主要过程,从而降低了它们对加速相对海平面上升(RSLR)的脆弱性。植物生长对RSLR的反应已得到很好的理解,并在百年尺度的土壤表面海拔变化预测模型中得到了体现。我们对SOM分解对加速RSLR的响应了解得很少。在这里,我们通过在两个连续的生长季节中,将已种植和未种植的基于田间的中观暴露于实验控制的相对海平面,从而量化了淹水深度和持续时间对SOM分解的影响。 SOM分解被量化为CO2流出,植物和SOM衍生的CO2通过(CO2)-C-13分离。尽管占主导地位的范例是分解速率与洪水成反比,但在没有植物的情况下SOM分解对洪水深度和持续时间不敏感。在两个生长季节中,与未种植的对照相比,植物的存在对SOM的分解产生了显着影响,使SOM衍生的CO2通量分别增加了267%和125%(分别在2012年和2013年)。此外,植物对SOM分解的刺激与植物生物量,尤其是地上生物量密切相关。我们得出的结论是,SOM分解速率不是直接由相对海平面及其对土壤中氧气扩散的影响所驱动,而是由植物对相对海平面的响应间接驱动。如果该结果更普遍地应用于潮汐湿地,则对于响应加速的RSLR的SOM累积和表面高度变化模型具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号