...
首页> 外文期刊>Global change biology >Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape
【24h】

Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape

机译:一氧化二氮总产量推动整个盐沼景观中的一氧化二氮净流量

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2O. Measurements of net N2O fluxes alone yield little insight into the different effects of redox conditions on N2O production and consumption. We used in situ measurements of gross N2O fluxes across a salt marsh elevation gradient to determine how soil N2O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid-marshes relative to the high marsh (P 0.001). Net N2O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 +/- 5.4 mu g N m(-2) h(-1), -2.2 +/- 0.9 mu g N m(-2) h(-1), and 0.67 +/- 0.57 mu g N m(-2) h(-1) in the low, mid, and high marshes, respectively. Both net N2O release and uptake were observed in the low and high marshes, but the mid-marsh was consistently a net N2O sink. Gross N2O production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2O consumption did not differ among marsh zones. Thus, variability in gross N2O production rates drove the differences in net N2O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2O in salt marshes to improve our predictions of changes in net N2O fluxes caused by future sea level rise.
机译:海平面上升将改变盐沼中的淹没方式,改变控制硝化作用的氧化还原动力学,硝化作用是潜在的温室气体,一氧化二氮的源头,而反硝化作用是沿海生态系统中主要的氮损失途径,并且两者N2O的源和汇。仅凭净N2O通量的测量就无法了解氧化还原条件对N2O生产和消耗的不同影响。我们使用盐沼海拔梯度上的N2O总通量的原位测量来确定沿海生态系统中土壤N2O排放如何响应未来的海平面上升。与中高湿地相比,低湿地土壤硝酸盐含量降低,而高湿地土壤中的铁含量较高,土壤氧化还原度随沼泽海拔的降低而下降(两者均P <0.001)。此外,低沼泽和中沼泽的土壤氧气浓度相对于高沼泽地要低(P <0.001)。沼泽区之间的N2O净通量有显着差异(P = 0.009),平均为9.8 +/- 5.4μg N m(-2)h(-1),-2.2 +/- 0.9μgN m(-2)h( -1)和0.67 +/- 0.57μg N m(-2)h(-1)在低,中和高沼泽地分别。在低沼泽和高沼泽地都观察到净的N2O释放和吸收,但是中沼泽始终是净的N2O汇。在低沼泽地区,N2O的总产量最高,在中沼泽地区则最低(P = 0.02),而在不同的沼泽地带,N2O的总消费量没有差异。因此,N2O的总生产率的可变性驱使沼泽地带之间N2O净通量的差异。我们的结果表明,未来的研究应侧重于阐明对盐沼中N2O的产生而非消耗的过程的控制,以改善我们对未来海平面上升引起的N2O净通量变化的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号